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Abstract

We study solution concepts for normal-form games. We obtain a characterization
of Nash equilibria and logit quantal response equilibria, as well as generalizations
capturing non-expected utility. Our axioms reflect that players are responsive to payoffs
induced by the play of others and, whenever several games are played simultaneously,
players may consider each separately.
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1 Introduction

Consider a player who plays both poker and rock-paper-scissors at a game night. Since
these are separate games, a simple modeling choice for describing her decision-making
is to assume that she chooses her strategies independently in the two games. If we use
Nash equilibrium as our solution concept in analyzing this composite game, then we are
guaranteed to have a solution that is of this form (alongside other equilibria, in which
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strategies are correlated). In this paper, we explore solution concepts that likewise do not
rule out independent play in composite games.

We say that such solution concepts permit bracketing. This allows players to treat
each game separately, simplifying their decision-making. Bracketing has been extensively
documented in decision problems (Read, Loewenstein, and Rabin, 1999), and also in
strategic settings: in Bland (2019), most subjects bracket when playing a composite game
even when doing so is suboptimal. In our case, however, bracketing is consistent with
rationality, as we only apply it in separable settings. It also does not constrain behavior,
since we do not require players to bracket in every solution. Rather, bracketing is an
Occam’s razor assumption that enables analysts to ignore irrelevant factors and write a
parsimonious model.

By itself, our bracketing assumption is not very strong as it does not rule out other
behavior and only applies to composite games. We augment bracketing with monotonic-
ity/rationality assumptions that capture the idea that players anticipate the behavior of
others and respond to the strategies of others, playing actions that yield higher payoffs more
often. Our main monotonicity axiom is distribution-monotonicity, which posits that players
are less likely to play actions that yield stochastically-dominated payoff distributions.

A stronger axiom, which we study to build intuition, is expectation-monotonicity,
which posits that players are less likely to play actions that yield lower expected payoffs.
In our first result, we consider solution concepts that permit bracketing and satisfy
expectation-monotonicity (Theorem 1). We demonstrate that these axioms characterize
Nash equilibrium and logit quantal response equilibrium (LQRE), providing a novel
unifying perspective on these established solution concepts. The broader family of quantal
response equilibria (QRE) has been criticized for being overly permissive (Haile, Hortaçsu,
and Kosenok, 2008). Our axioms single out the one-parameter logit subfamily, offering a
justification for the use of LQRE and elevating it beyond its typical role of a computationally
convenient choice.

In our main result, we consider the more general case of solution concepts that permit
bracketing and satisfy distribution-monotonicity. This leads to a characterization of new
solution concepts that incorporate non-expected-utility in equilibrium behavior, and yet
retain much of the conceptual appeal of Nash equilibria and LQRE (Theorem 2). In these
solution concepts, which we call statistic response equilibria, players respond to a statistic:
a single number assigned to a distribution of payoffs. Players use the same statistic in every
game, and so they behave as if they have a preference over lotteries that applies across
various strategic situations. When the statistic is the expectation, the solution concept
boils down to Nash or LQRE. More generally, the statistic is a monotone additive statistic,
à la Mu, Pomatto, Strack, and Tamuz (2024).
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The class of statistic response equilibria is broad, and we characterize a parametric
subclass that maintains flexibility. Using a scale-invariance axiom, we characterize a
three-parameter family of statistic response equilibria, which we anticipate to be useful
in estimating empirical models of games (Theorem 3). In these min-max-mean response
equilibria, players logit best respond to a convex combination of the minimum, maximum,
and expectation of the payoff distributions.

In conclusion, our paper develops a conceptual framework that grounds commonly used
solution concepts and motivates new generalizations of them. For theorists, we provide
a flexible approach to defining non-expected-utility equilibrium concepts that preserve
key properties of classical equilibrium notions. Moreover, this approach microfounds
the existence of stable preferences over lotteries that drive behavior across games. For
empiricists, we offer guidance in selecting models that are based on the established
principles of rationality and bracketing. These models are parsimonious, yet flexible enough
to accommodate a range of behavior.

1.1 Related literature

We contribute to a large body of literature on the axiomatic approach in economic theory.
This methodology has been used extensively to characterize solutions with desirable
properties for cooperative games, bargaining, and mechanism design problems; see surveys
by Moulin (1995), Roth (2012), and Thomson (2023). In non-cooperative game theory, the
axiomatic approach has been applied primarily toward choosing equilibrium refinements
(Harsanyi and Selten, 1988; Norde, Potters, Reijnierse, and Vermeulen, 1996; Govindan
and Wilson, 2012).

Our work contributes to a smaller strand of axiomatic literature that aims to characterize
solution concepts for non-cooperative games. Peleg and Tijs (1996) characterize Nash
equilibrium and some of its refinements by assuming that players only care about expected
payoffs, pick the highest-utility actions in one-player games, and, if some players are
replaced with dummies playing their predicted strategies, the behavior of the remaining
players remains consistent with the original prediction. This characterization highlights
the population-consistency aspect of Nash equilibrium; see also (Thomson, 2024, Chapter
8) and Norde, Potters, Reijnierse, and Vermeulen (1996) for further discussion.

More recently, Brandl and Brandt (2024) provided a novel axiomatic characterization
of Nash equilibria. Their axioms focus on how players’ behavior is affected by negligible
changes in the strategic environment. We discuss in depth the connection between their
axioms and ours in Appendix H, where we also explain which of their axioms are satisfied
by our statistic response equilibria. Other axiomatic results include Brandl and Brandt
(2019), who characterize maximin strategies in zero-sum games, as well as Babichenko
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(2014) and Voorneveld (2019), where pure Nash equilibria are derived using a strategic
invariance axiom similar to the one in our Appendix I.

The key axiom in our approach is bracketing. This term is often used in a broader
sense than in our paper and includes neglect of interactions between related choices. It has
been extensively studied in the context of individual decisions, where much of the literature
treats bracketing as a behavioral bias (see, e.g., Read, Loewenstein, and Rabin, 1999;
Barberis, Huang, and Thaler, 2006). Bland (2019) experimentally documents bracketing
in games, and specifically in composite games.

Our paper belongs to a recent literature offering a rational perspective on bracketing.
Kőszegi and Matějka (2020) justify bracketing as rational behavior in a model with costly
attention, and Camara (2022) offers a computational complexity justification.

The basic idea behind the proof of Theorem 1 originated in our previous paper (San-
domirskiy, Sung, Tamuz, and Wincelberg, 2025), where we study single-agent decisions
and characterize mixed logit. The main axiom in that paper (independence of irrelevant
decisions, or IID) stipulates that the prediction for composite decisions should have the
same marginals as the prediction for the components. This is different from our bracketing
axiom in several aspects. First, the bracketing axiom does not require every prediction to
have the same marginals, but only that the solution concept includes one such prediction.
Second, in that one prediction we also require independence, which is not part of the IID
axiom. Accordingly, the key difficulty in Sandomirskiy, Sung, Tamuz, and Wincelberg
(2025) is handling correlated decisions, which is achieved via the De Finetti theorem. In
this paper, the main difficulty is in the proof of Theorem 2, and stems from the endogeneity
of randomness.

Luce (1959) used the classical independence of irrelevant alternatives (IIA) axiom to
characterize multinomial logit choice in decision problems, which is equivalent to LQRE
in single-player games. As we explain at the end of §3, our axioms are conceptually and
technically different from IIA. While one could expect that LQRE in games could also be
characterized using a modification of IIA, we highlight some difficulties in this approach
for more than one player.

Our first set of results provides a rationality-based justification for the logit subfamily
of quantal response equilibria (QRE). Introduced by McKelvey and Palfrey (1995), QRE
has been empirically successful at explaining deviations from Nash equilibrium predictions
across a wide range of experiments (Goeree, Holt, and Palfrey, 2016, 2020). The axiomatic
approach has been applied to define non-parametric subclasses of QRE by imposing axioms
directly on the quantal response functions (Goeree, Holt, and Palfrey, 2005; Friedman and
Mauersberger, 2022). By contrast, we do not take QRE as a starting point, and instead
axiomatize solution concepts rather than response functions. Furthermore, our results

4



differ in that they pin down the one-parameter class of logit QRE in particular, providing
a novel justification for a quantal response function that has been widely used to analyze
empirical data (see, e.g., Goeree, Holt, and Palfrey, 2016; Wright and Leyton-Brown, 2017;
Goeree, Holt, and Palfrey, 2020).

Our second set of results gives rise to a novel solution concept—statistic response
equilibria—where players respond to a monotone additive statistic of payoffs, a class of
statistics characterized by Mu, Pomatto, Strack, and Tamuz (2024). These equilibria
capture various attitudes toward the uncertainty induced by other players’ mixed strategies,
including the ambiguity averse multiplier preferences (Hansen and Sargent, 2001; Strzalecki,
2011). Importantly, these attitudes emerge from our axioms rather than being assumed a
priori. This contrasts with the literature on equilibrium concepts that incorporate specified
risk attitudes by transforming game payoffs according to some utility function reflecting
such an attitude (Goeree, Holt, and Palfrey, 2003; Yekkehkhany, Murray, and Nagi, 2020).
In fact, the risk attitudes resulting from our characterization cannot be replicated by any
such transformation of payoffs. In this way, we contribute to the literature on games with
non-expected-utility preferences (Shalev, 2000; Metzger and Rieger, 2019). An equilibrium
concept related to statistic response equilibria has appeared in the computer science
literature, where it has been shown to be efficiently computable under certain conditions
(Mazumdar, Panaganti, and Shi, 2024).

2 Solution Concepts and Axioms

We consider finite normal form games played between a fixed set of N ≥ 2 players {1, . . . , N}.
Such a game G = (A, u) is given by its finite set of action profiles A = ∏

i Ai and its payoff
function u : A → RN , where Ai is the set of actions of player i and ui(a) is the payoff to
player i when an action profile a is played. We interpret payoffs as utilities, although the
monetary interpretation will also prove to be interesting for some of our results.

A mixed strategy pi ∈ ∆Ai of player i is a probability distribution over Ai. A mixed
strategy profile p = (p1, . . . , pn) induces a product distribution over A, also denoted by
p, with its marginal on A−i = ∏

j ̸=i Aj denoted p−i. Given p, we write ui(ai, p−i) for the
lottery faced by player i when playing action ai, while other players use mixed strategies p−i.
The corresponding expected payoff is denoted by E[ui(ai, p−i)].

A solution concept S assigns to each game G a nonempty set S(G) ⊂
∏

i ∆Ai of mixed
strategy profiles, referred to as solutions.1 One can think of these solutions as potential

1There is a technical nuance that can be safely ignored without missing the gist of the paper: the
collection of all finite sets is not a set, and neither is the collection of all finite games. Hence, for a solution
concept to be a well-defined correspondence, we assume that all actions available to any player in any game
belong to a universal, non-empty set of actions A. We also suppose that A is closed under pairing, so

5



predictions for player behavior in G. We require that every game be assigned at least one
solution. For instance, the map S(G) = ∏

i ∆Ai assigning to each G the set of all mixed
strategy profiles is a valid—albeit uninformative—solution concept. A more important
example of a solution concept is Nash(G), the correspondence that assigns to G the set of
mixed Nash equilibria. Given λ ≥ 0 and a game G = (A, u), the logit quantal response
equilibrium correspondence is given by 2

LQREλ(G) =
{

p ∈ Πi∆Ai | pi(ai) ∝ exp
(
λE[ui(ai, p−i)]

)
∀i

}
.

To compare solution concepts by how specific they are, we say that a solution concept
S is a refinement of S′ if S(G) ⊆ S′(G) for all games G. For example, the solution concept
assigning to each game its set of trembling hand perfect equilibria is a refinement of Nash.

Our first axiom is a rationality assumption reflecting that players tend to choose actions
with higher payoffs more often. Given a distribution over actions p, we say that an action
ai ∈ Ai first-order dominates bi ∈ Ai if the lottery ui(ai, p−i) first-order stochastically
dominates ui(bi, p−i), which we denote by ui(ai, p−i) ≥FOSD ui(bi, p−i). If moreover the
distributions of ui(ai, p−i) and ui(bi, p−i) are not identical, we say that ai strictly first-order
dominates bi and write ui(ai, p−i) >FOSD ui(bi, p−i).3

Definition 1. A solution concept S satisfies distribution-monotonicity if

ui(ai, p−i) >FOSD ui(bi, p−i) implies pi(ai) ≥ pi(bi)

for every game G = (A, u), solution p ∈ S(G), player i, and actions ai, bi ∈ Ai.

In other words, distribution-monotonicity means that if one action strictly first-order
dominates the other, the dominated action cannot be played with a higher probability.
Both Nash and LQRE satisfy distribution-monotonicity, as do their refinements. Moreover,
every QRE satisfies distribution-monotonicity.4

that A × A ⊂ A.
2We use pi(ai) ∝ exp(λE[ui(ai, p−i))] to indicate equality up to normalization of the probabilities, i.e.,

pi(ai) = exp(λE[ui(ai, p−i)])∑
b∈Ai

exp(λE[ui(b, p−i)])
.

3First-order dominance means that for any threshold t, the probability that ui(ai, p−i) yields a payoff
greater than t is at least as high as the probability that ui(bi, p−i) yields a payoff greater than t. Equivalently,
E

[
f
(
ui(a)

)∣∣ai

]
≥ E

[
f
(
ui(a)

)∣∣bi

]
for any nondecreasing payoff transformation f : R → R. Strict dominance

corresponds to strict inequality for any strictly increasing f .
4One could imagine a weak-weak version of distribution-monotonicity in which the weak inequality

ui(ai, p−i) ≥FOSD ui(bi, p−i) already implies pi(ai) ≥ pi(bi). It has the additional implication that players
must break ties uniformly and, hence, is not satisfied by the Nash solution concept, but is satisfied by
LQRE. Likewise, strong implies strong carries the implication that all actions, even strictly dominated
ones, must be played with positive probability if they do not yield the FOSD-lowest distribution. Again,
the strong-strong version is satisfied by LQRE but not Nash.
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Distribution-monotonicity is an ordinal axiom that is invariant to monotone trans-
formations of payoffs. Consequently, Nash equilibrium with monotone-reparameterized
payoffs (Weinstein, 2016) and risk-adjusted QRE under reparameterized payoffs (Goeree,
Holt, and Palfrey, 2003) also satisfy distribution-monotonicity. Distribution-monotonicity
is also satisfied by S(K) equilibria (Osborne and Rubinstein, 1998), where players respond
to independent draws from the payoff distribution induced by each action.

This axiom includes two conceptual assumptions. First, it introduces a notion of
rational expectations into a solution concept, in the sense that players anticipate the others’
actions. Second, it captures a notion of rationality, because players prefer actions with
higher payoffs. This is closer in spirit to equilibrium analysis than to rationalizability,
which will be reflected in the solution concepts we characterize. Note, however, that this
axiom does not entail the assumption that players can perfectly anticipate others’ actions.
Instead, it only requires that players do this well enough to “get it right more often than
not” in the sense that they choose a dominating action with higher probability.

Our second axiom, bracketing, asserts that players who are engaged in multiple unrelated
games may consider each game independently. Formally, for games G = (A, u) and
H = (B, v), we define the composite game G ⊗ H = (C, w) by

Ci = Ai × Bi and wi ((a1, b1), . . . , (an, bn)) = ui(a) + vi(b).

In G ⊗ H, each player i chooses an action ai from Ai and an action bi from Bi—effectively
playing both games simultaneously—and earns the sum of payoffs from the two games.
We call G and H component games of the composite game G ⊗ H.

To make sense of the summation of payoffs across different games, we of course need to
think of payoffs as being quoted in the same units, across all games. If payoffs are money,
the additive payoff structure of the composite game captures the unrelated nature of the
component games, i.e., the action in one does not affect the payoff in the other. If payoffs
are utilities, the additive structure again captures a sense in which the two games are
unrelated. While the particular choice of summation (rather than another operation) may
seem arbitrary, we argue in Appendix K that any other reasonable way of assigning utilities
to the composite game boils down to addition after a monotone reparameterization.

Given mixed strategy profiles p and q for games G and H, we define the mixed strategy
profile p × q for the game G ⊗ H by

[p × q]i(ai, bi) = pi(ai) · qi(bi).

So, when players are playing p × q in G ⊗ H, they independently choose strategies in G

from p and in H from q.
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Definition 2. A solution concept S permits bracketing if, for all games G and H,

p ∈ S(G) and q ∈ S(H) implies p × q ∈ S(G ⊗ H).

When a solution permits bracketing, solutions of G and H can be combined into a
solution of the composite game G ⊗ H by having players choose their actions independently
in the two component games. Viewing solutions as predictions, our bracketing assumption
requires that independently following the predictions in the component games constitutes a
valid prediction for the composite game. Importantly, this assumption does not rule out the
existence of other predictions for the composite game. Accordingly, rather than restricting
the set of predictions that a solution concept gives for a composite game, the bracketing
assumption ensures that the set of predictions is rich enough to contain independent
predictions.5 Notably, bracketing applies only to the very small class of composite games,
and does not imply anything for a generic game, which will not be a composite game with
exactly additive payoffs, even if the action sets do have a product structure.

The Nash correspondence permits bracketing. Note that not all mixed Nash equilibria
in composite games are products of equilibria in the component games, but these products
do appear in the solution of the composite game, as required by bracketing.

Many refinements of Nash also permit bracketing. These include maximal-entropy
Nash equilibria,6 trembling hand perfect equilibria, and welfare-maximizing equilibria.
However, not all refinements do. For example, minimal-entropy Nash equilibria—a natural
extension of pure Nash equilibria to a non-empty correspondence—violate bracketing as
entropy can be reduced by correlating unrelated choices.7 Likewise, a refinement obtained
by eliminating Nash equilibria that are Pareto dominated by other Nash equilibria does
not permit bracketing.8 This is a weakness of our approach, as Pareto optimality is a
desirable criterion in many normative settings.

Alongside with Nash equilibria, LQREλ also permits bracketing. In fact, this corre-
spondence satisfies a stronger property: the set of solutions of a composite game is exactly
the set of all products of solutions of the component games.

5Indeed, starting from any solution concept, one can define its closure under bracketing by repeatedly
adding all the products to the set of solutions of composite games.

6The maximal-entropy equilibria are the Nash equilibria that maximize the Shannon entropy of the
joint distribution of actions.

7Minimal-entropy Nash equilibria are defined similarly to maximal-entropy ones. To see that this
solution concept does not permit bracketing, consider a composition of two copies of matching pennies. The
minimal-entropy Nash assigns to matching pennies the unique Nash, and assigns to the composite game the
mixed-strategy profiles in which both players perfectly correlate (or anti-correlate) their strategies across
the two components. Thus, the product strategy does not appear in the solution of the composite game.

8A standard intuition applies: Pareto optimal allocation in sub-markets may not give rise to a Pareto
optimal allocation in the market itself due to beneficial trades across sub-markets.
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Other solution concepts that permit bracketing include the rationalizable mixed strate-
gies, welfare maximizing (or minimizing) mixed strategy profiles, level-k models in which
level-0 players choose uniformly, as well as cognitive hierarchy models with the same base
choices. Probit QRE does not permit bracketing, and (as will follow from our results)
neither does any QRE that is not logit. The set of all Pareto optimal mixed strategy
profiles likewise does not permit bracketing.

We do not think of bracketing as a behavioral axiom, which assumes that players always
act independently in composite games. Indeed, such an assumption would require every
solution of a composite game to be a product. We think of this axiom as a desirable property
of a model, from the point of view of an analyst who has to choose a solution concept.
Bracketing is assumed explicitly or implicitly in many models. Allowing for independent
behavior enables an analyst to exclude from the model the universe of unrelated factors
and considerations, and write a parsimonious description of the situation of interest.

Unlike distribution-monotonicity, bracketing is not an ordinal axiom. This axiom
requires that combinations of strategic situations perceived as unrelated—meaning that
choosing actions independently is plausible—correspond to additive separability of payoffs
rather than to some alternative way of combining games. In Appendix K, we show
that any other reasonable operation for combining games reduces to summing monotone-
reparameterized payoffs. The bracketing axiom thus selects a particular parametrization
in which additive payoffs represent unrelated games, effectively pinning down a specific
utility function over outcomes.

Finally, we also consider anonymity, a simplifying assumption which does not affect
the essence of our results. Anonymity requires that permuting players’ names results
in the corresponding permutation of the solution concept’s predictions—that is, the
solution concept treats all the players in the same way. Given a game G = (A, u) and a
permutation of players π : N → N , define the permuted game Gπ = (B, v) by Bi = Aπ(i),
and vi(aπ(1), . . . , aπ(n)) = uπ(i)(a1, . . . , an) for all i ∈ N , and a ∈ A. Each mixed strategy
profile p in G yields a permuted profile pπ in Gπ by (pπ)i = pπ(i).

Definition 3. A solution concept S satisfies anonymity if for any permutation π of players,
game G, and its solution p ∈ S(G), we have pπ ∈ S(Gπ).

Our anonymity axiom is a symmetry assumption requiring that players’ names do not
matter.9 In contrast, we nowhere require that action names do not matter. In particular,
our setting and axioms do not rule out framing effects, where players behave differently
depending on how actions are labeled.

9Note that anonymity does not require that every solution to a symmetric game is symmetric, but
instead that the set of solutions is symmetric. For example, if G is symmetric then anonymity means that
if (p1, p2) ∈ S(G), then so is (p2, p1).
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3 Expectation-Monotonicity and Logit Quantal Response Equilibrium

To develop our intuition for the interaction between bracketing and monotonicity, in
this section we strengthen the distribution-monotonicity axiom, and study expectation-
monotonicity.

Definition 4. A solution concept S satisfies expectation-monotonicity if

E[ui(ai, p−i)] > E[ui(bi, p−i)] implies pi(ai) ≥ pi(bi)

for every game G = (A, u), solution p ∈ S(G), player i, and actions ai, bi ∈ Ai.

That is, actions with strictly lower expected payoffs cannot be played with a higher
probability. Conceptually, this axiom adds an expected utility assumption on top of the
rational-expectations and rationality assumptions implied by distribution-monotonicity.
Alternatively, if we think of payoffs as money rather than utilities, expectation-monotonicity
reflects the assumption that players are risk-neutral. As with distribution-monotonicity,
this axiom does not imply that players can calculate expected utilities exactly, but only
that they do this well enough, in the sense that they choose actions with higher expected
utility more often.

Expectation-monotonicity is satisfied by Nash, LQREλ, probit QRE, and, more gen-
erally, any regular QRE (Goeree, Holt, and Palfrey, 2005), and M-equilibrium (Goeree
and Louis, 2021). It is closed under refinements. The level-k and cognitive hierarchy
model solution concept do not satisfy this axiom, and neither does the set of rationalizable
mixed strategies. Each of the three properties—bracketing, anonymity, and expectation-
monotonicity—is satisfied by many well-known solution concepts. Among the examples
mentioned above, Nash and LQREλ satisfy all three, as do trembling hand Nash and
maximum entropy Nash. The following theorem shows that any solution concept satisfying
all of the three properties must include only Nash equilibria or only logit quantal response
equilibria.

Theorem 1. If S permits bracketing and satisfies expectation-monotonicity and anonymity,
then S is a refinement of Nash, or of LQREλ for some λ ≥ 0.

Theorem 1 gives yet another piece of evidence for the importance of Nash equilibria.
It also provides a novel justification for the particular logit form of QRE, beyond its
tractability. Furthermore, Theorem 1 establishes a connection between Nash and LQREλ.
Notice that Nash is not merely a limiting case of LQREλ as λ → ∞; McKelvey and Palfrey
(1995) show that limit points of LQREλ are Nash equilibria, but not every Nash equilibrium
can be obtained as a limit point of LQREλ. Indeed, there is an interesting distinction
between logit quantal response equilibria (and their limit points) and Nash equilibria.
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While all logit quantal response equilibria of a composite game are products of equilibria
of its component games, there exist Nash equilibria of composite games that do not satisfy
this property. In fact, Nash equilibria exhibit a very rich correlation structure: any strategy
profile of a composite game that marginalizes to Nash equilibria of its component games
constitutes a Nash equilibrium.

Another property common to Nash and LQREλ is that they assign the same set of
solutions to strategically equivalent games. These are games with the same action sets
and the same marginal utilities of switching from one action to the other. We explore this
notion in Appendix I and demonstrate that the requirement of expectation-monotonicity in
Theorem 1 can be relaxed to distribution-monotonicity, together with the requirement that
strategic equivalence is respected by the solution concept. This result further highlights
the importance of these solution concepts and their connection.

The theorem is proved in Appendix A. We illustrate some of the ideas here. Suppose S

satisfies expectation-monotonicity, bracketing, and anonymity. Consider a class of games,
where all players but player 1 are dummies facing no strategic choice, and player 1 chooses
between two actions, one of which is dominant. In such a game Gx, indexed by x > 0, the
action sets are A1 = {h, ℓ} and Ai = {c} for i ̸= 1, and the payoff for the first player is
x when playing h and 0 when playing ℓ. We will refer to games Gx as test games as the
behavior of S on Gx turns out to determine its behavior elsewhere.

Consider a solution p ∈ S(G1). We consider two cases depending on whether the
dominated action is excluded (p1(ℓ) = 0) or not (p1(ℓ) > 0). In the former case, it turns
out that S is a refinement of Nash, and in the latter, a refinement of LQRE. The case of
p1(ℓ) = 0 is treated in the following claim:

Claim 1. If p1(ℓ) = 0, then S is a refinement of Nash equilibrium.

Proof. The solution p ∈ S(G1) with p1(ℓ) = 0 coincides with the Nash prediction for
this test game. We now show that for any game H = (B, v), each q ∈ S(H) is a Nash
equilibrium as well. For the sake of contradiction, suppose E[vi(b, q−i)] > E[vi(a, q−i)]
while qi(a) > 0 for some player i and some actions a, b ∈ Bi. By anonymity, we can assume
that i = 1. Choose

n >
1

E[v1(b, q−1)] − E[v1(a, q−1)] ,

and consider the composite game Hn ⊗ G1, where Hn denotes the n-fold composition
H ⊗ · · · ⊗ H. By bracketing, qn × p (where qn = q × · · · × q) is a solution for this composite
game. In the composite game, the expected payoff to player 1 for playing b in every copy
of H and playing ℓ in G1 is strictly higher than playing a in every copy of H and playing
h in G. This violates expectation-monotonicity since qn × p places positive probability on
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(a, . . . , a, h) and zero probability on (b, . . . , b, ℓ), since p1(ℓ) = 0. Hence players never play
strategies that yield lower expected payoffs, i.e., they play a Nash equilibrium.

We now discuss the case p1(ℓ) > 0, which corresponds to LQREλ. Unlike Nash, this
rule is sensitive to magnitudes of payoff differences. As we explain below, the exponential
function capturing this sensitivity originates from an equation linking S(Gx) across test
games Gx, while the constant λ is determined by the solution p to any single test game Gx.

As the first step toward deriving an equation linking behavior across games, we show
in the appendix that p1(ℓ) > 0 implies two general properties of S: interiority and
expectation-neutrality. A solution concept S satisfies interiority if every action in every
game is played with positive probability, that is, for every game G = (A, u), solution
p ∈ S(G), and player i ∈ N , we have pi(ai) > 0 for each ai ∈ Ai. It satisfies expectation-
neutrality if actions yielding equal expected payoffs are played with equal probabilities:
E[ui(ai, p−i)] = E[ui(bi, p−i)] implies pi(ai) = pi(bi).

Next, we consider three test games Gx, Gy and Gx+y for arbitrary payoffs x and y

and derive an equation relating solutions assigned by S to these games. This step is an
adaptation to our setting of the proof strategy used by Sandomirskiy, Sung, Tamuz, and
Wincelberg (2025) for single-valued predictions in a single-agent setting. We illustrate the
core argument further assuming that the solution S is single-valued, and let rx denote the
probability with which player 1 chooses the dominant action h according to S(Gx). In the
composite game Gx ⊗ Gy ⊗ Gx+y, the action tuples (h, h, ℓ) and (ℓ, ℓ, h) both give player 1
a total payoff of x + y. By expectation-neutrality, these two profiles must be chosen with
equal probability, leading to the identity

rxry
(
1 − rx+y

)
= (1 − rx)(1 − ry)rx+y.

By interiority, none of the factors is zero, so we can take logarithms on both sides. Defining
f(x) = log

(
rx/(1 − rx)

)
, we obtain the Cauchy functional equation f(x) + f(y) = f(x + y).

The function f must be monotone to be compatible with expectation-monotonicity. Since
the only monotone solutions to the Cauchy equation are linear functions, f(x) = λ · x,
where λ ≥ 0 is uniquely determined by the probability of h in any game Gx. We conclude
that S is a refinement of LQREλ on the family of test games Gx. The details of this
argument and its extension to arbitrary games G are contained in the appendix.

We note that anonymity is not a crucial assumption for Theorem 1, but rather ensures
that all players behave alike. Without anonymity, we get a version of LQREλ with player-
specific λi instead of a common λ, as well as chimeric rules where some agents use logit
best responses and others best-respond as in Nash equilibrium.10 As a corollary, we do not

10McKelvey, Palfrey, and Weber (2000) extended the QRE framework to allow for such λ-heterogeneity.
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require anonymity to characterize refinements of Nash equilibrium (even though it is an
anonymous solution concept).

Corollary 1. If S permits bracketing, satisfies expectation-monotonicity, and players never
play strictly dominated actions, then S is a refinement of Nash.

The assumption on strictly dominated actions serves to distinguish Nash from LQRE.
In fact, under the assumptions of expectation-monotonicity and bracketing, any feature
of Nash equilibrium that does not apply to LQRE will lead to a characterization of
only Nash equilibrium and vice versa. For example, we can weaken the assumption on
strictly dominated actions by supposing that every player plays some action with zero
probability in some game. Similarly, one can characterize LQRE by augmenting the
axioms of Theorem 1 with, for example, the assumption of interiority or, alternatively,
with expectation-neutrality.

In Appendix H, we compare this characterization of Nash equilibrium with that of Brandl
and Brandt (2024). Their axioms rule out non-trivial refinements of Nash equilibrium,
whereas our axioms allow for some refinements, such as trembling hand perfect equilibrium.
Recall that not all refinements of Nash permit bracketing, which provides a justification
for selecting some refinements of Nash over others.

It is also instructive to compare our bracketing axiom with the classical IIA axiom used
by Luce (1959) to characterize multinomial logit, i.e., LQRE for single-agent decisions.
Luce’s axiom stipulates that the ratio between the choice probabilities of two given
alternatives is the same in any two menus containing them. Bracketing relates a composite
game to its component games, and does not impose any restrictions on behavior in pairs
of games where neither is a component of the other. Moreover, bracketing by itself does
not pin down LQRE, and is satisfied by many solution concepts, such as level-k reasoning
with uniform mixing at level 0.

One could imagine an alternative approach to axiomatizing LQRE based on an appro-
priate extension of the IIA axiom. However, there is a conceptual difficulty, as highlighted
by the following example. In Table 1, we consider two games that differ by c1, which is an
additional action available to player 1 in the game on the right.

In any LQRE, the unique solution to the left game is uniform mixing by both players. A
naive adaptation of the IIA property to games would require any solution q to the game on
the right to also satisfy q1(a1) = q1(b1), since the two actions have the same payoff profile
as they do in the game on the left. However, unless β = δ, player 2 will not randomize
uniformly under q (provided λ ̸= 0). Thus q1(a1) ̸= q1(b1) for all LQREλ, with λ ̸= 0.

Interestingly, they experimentally reject the hypothesis that λ is fixed across games, which is a consequence
of our axioms.
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a2 b2

a1 (0, 0) (2, 0)
b1 (1, 0) (1, 0)

a2 b2

a1 (0, 0) (2, 0)
b1 (1, 0) (1, 0)
c1 (α, β) (γ, δ)

Table 1: Additional actions are not irrelevant

4 Distribution-Monotonicity and Statistic Response Equilibria

In this section we show that the only solution concepts permitting bracketing and satisfying
anonymity and distribution-monotonicity are statistic response equilibria, where players
respond to a statistic of each action’s payoff distribution. This class of equilibria generalizes
Nash and LQREλ—in which players evaluate actions by their expected payoffs—and
accommodates other preferences over payoff distributions (which we refer to as lotteries).
Notably, our characterization implies that players behave as if driven by a single preference
for lotteries that is stable across all games.

We use the term statistic to refer to a function Φ that assigns a real number to every
lottery and satisfies Φ[c] = c for deterministic lotteries yielding a constant amount c. Here,
a lottery is simply a finitely supported distribution over the real line. Lotteries arise in
our setting as the payoffs a player anticipates when choosing an action, given the mixed
strategies of the other players. We denote lotteries by X, Y , and X + Y denotes the lottery
corresponding to the sum of outcomes drawn independently from X and Y ; that is, the
distribution of X + Y is the convolution of the distributions of X and Y .

We now define a class of statistics that are monotone with respect to first-order
stochastic dominance and additive for independent lotteries. Below, we demonstrate that
players must respond to this class of statistics.

Definition 5. A statistic Φ is a monotone additive statistic if

Φ[X + Y ] = Φ[X] + Φ[Y ] and Φ[Z] ≤ Φ[W ] for Z ≤FOSD W.

A canonical example of a monotone additive statistic is given by the normalized
cumulant-generating function of X, defined as Ka[X] = 1

a logE
[
eaX

]
for a ∈ R. Taking

limits as a approaches ±∞ and 0, we obtain K−∞[X], K0[X], and K∞[X], which correspond
to the minimum, expectation, and maximum of X, respectively. When X is a random
amount of money, the statistic Ka[X] has an important economic interpretation: each
Ka[X] represents the certainty equivalent of lottery X for an agent with constant absolute
risk aversion (CARA) utility, where −a is the coefficient of absolute risk aversion; negative
a values correspond to risk aversion, and positive values to risk-loving preferences. When
X is a random utility, Ka[X] represents a multiplier preference, which can be interpreted as
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a form of ambiguity aversion (Hansen and Sargent, 2001; Strzalecki, 2011). Mu, Pomatto,
Strack, and Tamuz (2024) show that this example is, in fact, universal: any monotone
additive statistic can be represented as Φ[X] =

∫
R Ka[X] dµ(a) for some probability measure

µ on the extended real line R = R ∪ {+∞, −∞}. Hence, any monotone additive statistic
is a weighted average of statistics of the form Ka.11

In Nash equilibrium and in LQREλ players respond to the expectation of each action’s
payoff distribution. In a statistic response equilibrium, players evaluate actions using
a monotone additive statistic of the payoff distribution. Below we define two classes of
statistic response equilibria.

Definition 6. Given a monotone additive statistic Φ, a mixed strategy profile p is a NashΦ

equilibrium of the game G = (A, u) if for all players i

supp pi ⊆ arg max
ai

Φ
[
ui(ai, p−i)

]
.

In a NashΦ equilibrium, players best respond to the other players’ mixed strategies
according to Φ by randomizing over actions whose payoff distributions maximize Φ. The
next definition introduces a class of statistic response equilibria in which players “better
respond” to a monotone additive statistic of each distribution.

Definition 7. Given a monotone additive statistic Φ and λ ≥ 0, a mixed strategy profile p

is an LQREλΦ equilibrium of the game G = (A, u) if for all players i and actions ai ∈ Ai

pi(ai) ∝ exp
(
λΦ

[
ui(ai, p−i)

])
.

NashΦ and LQREλΦ generalize Nash and logit quantal response equilibria, in which
players respond to the expectation, i.e., Φ = E.12 In general, the preference expressed
by a monotone additive statistic Φ is not equivalent to an expected utility preference.
As we show in Appendix J, the only exceptions are Φ = Ka for a ∈ R. Since these
correspond to multiplier preferences, NashΦ and LQREλΦ incorporate in games some
important preferences over gambles that have been previously explored in the decision
theory literature.

While every game has a Nash equilibrium, the existence of a NashΦ equilibrium is not
guaranteed for all Φ. For example, NashΦ equilibria may not exist when Φ is the minimum

11Mu, Pomatto, Strack, and Tamuz (2024) provide a characterization of monotone additive statistics on
the domain of all compactly supported (rather than finitely supported) lotteries. Their characterization
also applies to the domain of finitely supported lotteries, since any monotone additive statistic on this
restricted domain can be extended to the compactly supported lotteries. For a proof, see Appendix B.

12Despite a superficial resemblance of the algebraic expression, LQREλΦ does not reduce to mixed logit
for single-agent decision problems; in mixed logit choice probabilities are calculated by integrating the
exponent, rather than exponentiating the integral as in LQREλΦ.
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or maximum of a distribution. This issue does not arise for LQREλΦ, which do exist for
every game. As the next result shows, the existence of NashΦ equilibria is also guaranteed
for a large family of monotone additive statistics, namely those in which the maximum
and minimum do not play a role.

Proposition 1. Let Φ =
∫
R Ka dµ(a) be a monotone additive statistic. Then

• There is an LQREλΦ equilibrium for every game and λ ≥ 0.

• There is a NashΦ equilibrium for every game if and only if µ({−∞}) = µ({+∞}) = 0.

Proposition 1 is proved in Appendix C. The existence of an LQREλΦ equilibrium follows
from Brouwer’s fixed-point theorem, applied to a version of the logit response function; the
latter must be appropriately modified to ensure continuity when µ places positive weight
on ±∞. The proof that NashΦ equilibria exist when µ places no mass on the minimum or
maximum follows from a standard fixed point argument. This argument does not apply
when µ places positive mass on the minimum or maximum, since Φ may be discontinuous
at the limit point. Indeed, NashΦ equilibria may fail to exist for such µ, as we show using
a variant of matching pennies in Appendix C.

We call NashΦ and LQREλΦ statistic response equilibria as players best or better
respond to the statistic Φ of distributions induced by each available action. Formally, a
statistic response equilibrium (SRE) is a solution concept that returns all NashΦ or all
LQREλΦ equilibria for some Φ and λ.13

It is easy to verify that the SRE solution concepts satisfy our axioms. Bracketing follows
from the additivity of Φ, distribution-monotonicity is a consequence of the monotonicity
of Φ, and anonymity holds since all players use the same Φ. The next result shows that
these axioms, in fact, characterize SRE.

Theorem 2. If S permits bracketing and satisfies distribution-monotonicity and anonymity,
then S is a refinement of some SRE.

Anonymity in Theorem 2 can be removed as in Theorem 1, with the conclusion
appropriately altered to allow different players to best or better respond to different
statistics.

While distribution-monotonicity ensures that players’ mixing probabilities are monotone
with respect to first-order stochastic dominance, it does not provide a way to compare every
pair of distributions. Interestingly, Theorem 2 shows that, with bracketing, there is a total
order, defined by a statistic Φ, that dictates how players rank every payoff distribution.

13By Proposition 1, NashΦ is a well-defined solution concept only for Φ that puts no mass on the
maximum or minimum.
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We explore two different interpretations of this result. If payoffs are utilities, the
statistic Φ that players respond to is now (in general) not the expectation of these utilities.
Indeed, it is in general not even the expectation of any monotone transformation of these
utilities, as we explain in Appendix J. Thus, SREs incorporate non-expected-utility behavior
into games, yet do so in a principled way that preserves monotonicity and bracketing.
This flexibility allows a range of behavior that is larger than what can be accommodated
within the expected-utility framework. In §5 we explore a parametrized family of SREs
and explain how they can predict behavior that is compatible with the Allais paradox, for
example.

In another interpretation, payoffs are monetary. The statistic Φ to which players respond
is then a weighted average of CARA certainty equivalents across different coefficients. Hence
statistic response equilibria incorporate flexible risk attitudes which allow for risk-averse,
risk-loving, or mixed risk attitudes. Indeed, consider a statistic Φ[X] =

∫
R Ka[X] dµ(a). If

µ places mass only on negative values of a, Φ[X] ≤ E[X] for any lottery X, i.e., Φ reflects
risk-aversion. Conversely, if µ places mass only on positive values of a, then Φ[X] ≥ E[X]
and Φ reflects a risk-loving attitude. If µ places mass on both negative and positive
values of a, then Φ reflects a mixed risk attitude, i.e. there are lotteries X and Y with
Φ[X] < E[X] and Φ[Y ] > E[Y ]; see Proposition 5 of Mu, Pomatto, Strack, and Tamuz
(2024).

The proof of Theorem 2 begins with the observation (formalized in Proposition 2 below)
that solution concepts satisfying our axioms fall into one of two classes: first-order Nash or
first-order QRE.

Definition 8. A mixed strategy profile p for a game G = (A, u) is an FOSD-Nash if
pi(ai) = 0 whenever there exists bi ∈ Ai such that ui(ai, p−i) <FOSD ui(bi, p−i).

That is, p is a FOSD-Nash if players never play an action whose outcome distribution is
strictly first-order dominated by that of another action. This is a very permissive solution
concept that generalizes Nash. It retains the rational-expectations aspect of Nash equilibria,
but completely discards cardinal expectation-maximization, leaving only a weaker ordinal
assumption. Beyond Nash, every NashΦ is also a refinement of FOSD-Nash. Clearly,
FOSD-Nash satisfies distribution-monotonicity and is itself a refinement of the solution
concept consisting of all strategy profiles that survive repeated elimination of strictly
dominated strategies.

The next class is an analogous weakening of QRE:

Definition 9. A mixed strategy profile p for a game G = (A, u) is an FOSD-QRE if
pi(ai) > 0 for all i and ai ∈ Ai (interiority), and ui(ai, p−i) ≥FOSD ui(bi, p−i) implies
pi(ai) ≥ pi(bi).
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In this solution concept strategies satisfy a strengthening of distribution-monotonicity,
which, beyond monotonicity, implies that actions yielding equal outcome distributions
are played with the same probability; we call this property distribution-neutrality. In
the spirit of QRE, it also includes an interiority assumption, and indeed every regular
QRE is a refinement of FOSD-QRE, as is every LQREλΦ. As with FOSD-Nash, this is a
very permissive concept that includes no cardinal assumptions, but retains distribution-
monotonicity.

Proposition 2. If S permits bracketing and satisfies distribution-monotonicity and
anonymity. Then exactly one of the following two statements holds:

1. S is a refinement of FOSD-Nash.

2. S is a refinement of FOSD-QRE.

Proposition 2 is proved in Appendix D. To convey some of the ideas of the proof,
recall the classical notion of dominated actions. An action ai strictly dominates bi if
ui(ai, a−i) > ui(bi, a−i) for all a−i. Note that ai strictly dominates bi if and only if bi is
strictly first-order dominated for every p. However, ai can strictly first-order dominate bi

under some profile p−i but not others, in which case there is no strict dominance.
We show that the two cases in the proposition correspond to whether or not players ever

play strictly dominated actions. Similarly to the proof of Theorem 1, if such actions are
ever played, it can be shown that the solution concept satisfies interiority and distribution-
neutrality. The key difficulty in the proof is demonstrating that by ruling out strictly
dominated actions we inevitably rule out all first-order dominated actions as well. This
requires the construction of an interesting game (Table 5) and a novel result about stochastic
dominance (Lemma 5).

We now explain how we use Proposition 2 to complete the proof of Theorem 2. The
two cases in Proposition 2 correspond to the two families of SREs. Like in the proof of
Theorem 1, which led to the characterization of Nash and LQRE, we construct a family of
test games designed so that the behavior of S on this family fully determines its behavior
in general. The SRE solution concepts, which we ultimately aim to characterize, depend
on a statistic Φ. Accordingly, we require a sufficiently rich family of test games to identify
the statistic. This leads to a more intricate construction than the earlier games Gx, where
player 1 simply compared deterministic payoffs of 0 and x and all other players were
dummies. In contrast, for Theorem 2, player 1 must compare a given lottery X with a
deterministic payoff r. Crucially, the lottery X must arise endogenously from the strategies
of other players, who therefore can no longer all be dummies.
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We now describe the construction of test games that guarantee player 1 faces this
endogenous choice between X and r in every solution. The construction, based on
Proposition 2, varies depending on which of its two cases applies.

In the first case, we consider S that is a refinement of FOSD-Nash. The test game is
constructed as follows. Let X be a lottery with finite support and rational weights. Any
such lottery can be generated by sampling a coordinate of some vector x = (x1, . . . , xm)
uniformly at random. Given such a vector x ∈ Rm, a number r ∈ R, and small ε > 0, we
define a game Gr,x,ε. In this game, player 1 selects a1 ∈ {ax, ar} and a permutation π of
{1, . . . , m}. Player 2 selects a number a2 ∈ {1, . . . , m}. The resulting payoffs for player 1
are

u1
(
(ax, π), a2

)
= xπ(a2), u1

(
(ar, π), a2

)
= r + εxπ(a2). (1)

For player 2,

u2
(
(a1, π), a2

)
= −xπ(a2).

This game admits the following interpretation. Player 1 has m cards, each showing some
amount of money xi. Player 1 chooses a shuffling π of the cards. Player 2 chooses one
of these cards, and pays player 1 the amount of money the card shows. Depending on
whether player 1 chose ax or ar, player 1 either keeps the money paid by player 2 or else
player 1 gains r, but has to burn a 1 − ε fraction of the money received from player 2.
From the point of view of player 1, the choice between ar and ax is a choice between the
almost-deterministic payoff r (assuming ε is small) and the random amount of money
transferred by player 2. From the point of view of player 2 who transfers money to player
1, this game is very similar to a zero-sum game, since player 2 does not care if player 1
burns some of the transferred money.

To gain intuition about this game, consider its Nash equilibria first. Suppose player 2
does not choose uniformly at random. Then player 1 will choose a shuffling that takes
advantage of this, making player 2 more likely to pick a higher card. But knowing this,
player 2 would want to pick a different strategy, in order to pay less in expectation. Thus,
in equilibrium, player 2 must mix uniformly. We show in Lemma 7 that this conclusion
does not require the assumption that players play a Nash equilibrium: player 2 must mix
uniformly in every FOSD-Nash. Note that it is important that ε > 0. For ε = 0, it is not
guaranteed that player 2 will mix uniformly. E.g., if r > maxj xj , there is a pure Nash
equilibrium where player 1 selects ar and the identity permutation and player 2 chooses
the lowest card arg minj xj .

The uniform mixing of player 2 makes player 1 choose between the action ax that yields
the lottery X and ar that yields the (approximately) deterministic payoff r. Accordingly,

19



the test games provide a measure of how players evaluate a rich class of lotteries for any S

that is a refinement of FOSD-Nash. Indeed, the highest r for which player 1 chooses ax in
Gr,x,ε plays the role of an approximate certainty equivalent of the lottery X yielded by ax.
Formally, we define Φ as the following limit as ε → 0:

Φ[X] = lim
ε→0

(
sup

{
r ∈ R

∣∣∣ p1(ax, π) > 0 for some π and p ∈ S
(
Gr,x,ε

) })
.

The distribution-monotonicity and bracketing axioms imply the existence of the limit and
that the recovered Φ is a monotone additive statistic for lotteries with rational weights. We
then show that Φ extends uniquely to general lotteries that can include irrational weights.
Finally, we use the axioms to demonstrate that the same statistic Φ is deployed to compare
actions in every game, leading to S being a refinement of NashΦ. The details are provided
in the appendix.

In the second case of Proposition 2, we consider S that is a refinement of FOSD-QRE.
In this setting, it is more straightforward to construct a sufficient class of test games, where
player 1 is guaranteed to face an action that yields a given lottery X and an action that
yields a deterministic payoff r. This is due to distribution-neutrality, by which player 2
must uniformly mix between actions that result in the same deterministic payoffs, allowing
us to generate uniform mixing by setting u2 ≡ 0. Like the test games constructed for the
first case of Proposition 2, these test games provide a measure of how players evaluate a
rich class of lotteries, giving rise to a monotone-additive statistic Φ. We then show that
players logit respond to Φ in every game. This is demonstrated in a manner similar to the
LQRE case of Theorem 1.

5 Min-Max-Mean Response Equilibria

In statistic response equilibria, players respond to a statistic Φ, which is parameterized
by a probability measure µ on R, an infinite-dimensional parameter. Having such a large
parameter space can be challenging for empirical studies, especially on small datasets. In
this section, we introduce an additional axiom that singles out a tractable parametric
family of SREs that is rich enough to be empirically viable. In general, a monotone additive
statistic Φ can be viewed as an average of the statistics Ka[X] = 1

a logE[eaX ]. For high
values of a, Ka puts a lot of weight on the maximum of the distribution of X, in the sense
that Ka[X] tends to the maximum of X as a tends to infinity. For very low negative values
of a, almost all the weight is on the minimum. For a = 0, Ka is simply the expectation,
which in some sense puts very little weight on the minimum or maximum.

The parametric family that we consider consists of all the SREs in which Φ is just an
average of the minimum K−∞ (worst-case), maximum K∞ (best-case), and expectation K0

(average-case). This family thus captures much of the qualitative diversity of the family of
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SREs, while being much smaller, as it is parametrized by just three variables. We call this
family Min-Max-Mean response equilibria.

Definition 10. Given λ ∈ R3
≥0, a mixed strategy profile p is a Min-Max-Meanλ equilibrium

of a game G = (A, u) if

pi(ai) ∝ exp
(

λ1 min
a−i

ui(ai, a−i) + λ2E[ui(ai, p−i)] + λ3 max
a−i

ui(ai, a−i)
)

for all players i and actions ai ∈ Ai.

Min-max-mean response equilibria may reflect how players react to complexity in
games. Computing the minimum and maximum of each induced lottery is straightforward
and does not require any strategic reasoning. Empirically, players take the minimum and
maximum into account when they face multiple games simultaneously (Avoyan and Schotter,
2020). Moreover, assuming that other players are affected by the minimum and maximum
of the lotteries they face reduces the cognitive load of hypothesizing about opponents’
behavior. There is experimental evidence that players assume that their opponents use
simple heuristics in choosing their strategies. Friedenberg and Kneeland (2024) look at
three heuristics: the maximum, the minimum, and the sum of payoffs. One of their findings
is that 88% of subjects play as if they believe that, with some probability, their opponents
will use one of these heuristics rather than behave rationally.

All SREs are invariant to adding constants to players’ utilities. More generally, they
are invariant to adding the same independent lottery to every outcome; this follows directly
from the defining property of the monotone additive statistics that underlie SREs. To
characterize the class of Min-Max-Mean equilibria, we supplement this invariance with a
requirement of scale-invariance.

Definition 11. S satisfies scale-invariance if whenever pi is the uniform distribution on
Ai for all i, p ∈ S(A, u) implies p ∈ S(A, α · u) for all α ∈ (0, 1).

That is, reducing all payoffs by the same positive factor does not change whether the
uniform mixed strategy is a solution.14 This assumption is weak, along two dimensions.
First, it only applies when all players mix uniformly. In a way, this means that it only
restricts players’ behavior when all players are indifferent among all actions.15 Second, the
restriction is imposed only for scales α less than unity. Intuitively, it seems plausible that
if a player is indifferent between all actions, then they would still be indifferent when the
stakes are made lower.

14This requirement follows from the consistency and consequentialism axioms of Brandl and Brandt
(2024); see Appendix H.

15A longer but more cumbersome name such as indifference-scale-invariance might be more appropriate.
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To keep the statement of the next theorem simple, we rule out Nash equilibria by
assuming that players play every action with positive probability; due to Proposition 1,
removing this assumption would only add back the Nash solution concept and some of its
refinements.

Theorem 3. Suppose S permits bracketing and satisfies distribution-monotonicity, anonymity,
scale-invariance, and interiority. Then S is a refinement of Min-Max-Meanλ for some
λ ∈ R3

≥0.

Perhaps surprisingly, scale-invariance rules out all statistics except the extreme ones
and the expectation. While this family is simple enough to be represented with only three
parameters, it is rich enough to account for a wide range of behavior beyond expected-utility
preferences, such as that exhibited in the Allais paradox.

Probability 89% 1% 10%
a $10 $10 $10
b $10 $0 $11
c $0 $10 $10
d $0 $0 $11

Table 2: Classical Allais problem

Table 2 depicts a version of the classical Allais’ common consequence problem, where
the modal behavior is choosing a over b and d over c. If an individual has expected utility
preferences, they will prefer a over b if and only if they prefer c over d, regardless of
their utility function over dollar amounts. Thus, the modal behavior is not compatible
with expected utility. In contrast, this behavior can be rationalized by Min-Max-Mean
preferences. Indeed, if an individual places a sufficiently high weight on the minimum, they
will prefer a to b and d to c.16

Probability 1/3 1/3 1/3
a $10 $10 $10
b $5 $5 $18
c $0 $10 $20

Table 3: Min-Max-Mean preferences allow for a choice of b

If payoffs are interpreted as money rather than utilities, Min-Max-Mean preferences are
flexible enough to explain choices that are not consistent with risk-averse or risk-seeking

16If, for example, their utility function for money is simply the dollar amount, these choices are rationalized
if the weight on the minimum is at least ten times the weight on the maximum.
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expected-utility preferences. For the lotteries depicted in Table 3, any risk-averse individual
will strictly prefer a among {a, b, c}, any risk-seeking individual would strictly prefer c,
and a risk-neutral individual would be indifferent between a and c, but strictly prefer both
to b.17 In contrast, an individual with Min-Max-Mean preferences who places equal weight
on the max and min (and sufficiently little weight on the mean) will rank b the highest.
When faced with binary choices, this decision maker would choose b over a, exhibiting
risk-loving behavior, and b over c, exhibiting risk-averse behavior.

As suggested by these examples, the combination of parsimony and flexibility of
Min-Max-Mean preferences may prove useful in analyzing experimental data.

6 Conclusion

We have developed an axiomatic theory of how players bracket and evaluate strategic
decisions, characterizing both classical solution concepts and new ones that accommodate
non-expected-utility behavior, or mixed risk attitudes. Our analysis of bracketing reveals
it as a unifying principle underlying Nash equilibrium and LQRE, while also suggesting
natural generalizations of these concepts. We discuss below three questions for future
research.

In the definition of our solution concepts, it is hardwired that players randomize their
actions independently. A natural next step would be to consider solution concepts that
allow for correlated actions, such as the set of correlated equilibria. Since the set of
correlated equilibria satisfies a version of the bracketing axiom, extending our approach to
correlated actions would potentially result in a new perspective on correlated equilibria
and suggest their generalizations. The main challenge is finding the right analogue of the
monotonicity axioms.

One can also weaken the bracketing axiom by relaxing the independence requirement
and only asking that if p ∈ S(G) and q ∈ S(H), then some mixed strategy profile r

with marginals p and q is in S(G ⊗ H). For example, such an axiom would allow for
mixed LQRE, where the parameter λ is sampled from a distribution over R+ that is fixed
across games. We conjecture that such rules and their SRE cousins exhaust all the rules
satisfying our axioms with this relaxed bracketing assumption. A positive resolution to
this conjecture was established for one-player games in Sandomirskiy, Sung, Tamuz, and
Wincelberg (2025).

Our results show that Nash equilibria, LQRE, and their generalizations arise under
bracketing, as do some of their refinements. A complete characterization of which refine-
ments permit bracketing remains open. This question is particularly interesting for LQRE,

17This holds because a dominates b and c in the increasing concave order and c dominates a and b in the
increasing convex order.
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where the study of refinements has not been as extensive as in the Nash setting.
Bracketing may have different implications if restricted to particular classes of games,

e.g., symmetric or zero-sum games. Solution concepts that fail our axioms when applied to
all games might satisfy them within these restricted domains, potentially yielding novel
equilibrium notions tailored to particular strategic environments.

References

J. Aczél. Sur les opérations définies pour nombres réels. Bulletin de la Société Mathématique
de France, 76:59–64, 1948.

G. Aubrun and I. Nechita. Catalytic majorization and ℓp norms. arXiv preprint
arXiv:0702153, 2007.

A. Avoyan and A. Schotter. Attention in games: An experimental study. European
Economic Review, 124:103410, 2020.

Y. Babichenko. Axiomatic approach to solutions of games. arXiv preprint arXiv:1402.5165,
2014.

N. Barberis, M. Huang, and R. H. Thaler. Individual preferences, monetary gambles, and
stock market participation: A case for narrow framing. American Economic Review, 96
(4):1069–1090, 2006.

J. R. Bland. How many games are we playing? An experimental analysis of choice
bracketing in games. Journal of Behavioral and Experimental Economics, 80:80–91,
2019.

F. Brandl and F. Brandt. Justifying optimal play via consistency. Theoretical Economics,
14(4):1185–1201, 2019.

F. Brandl and F. Brandt. An axiomatic characterization of Nash equilibrium. Theoretical
Economics, 19(4):1473–1504, 2024.

M. K. Camara. Computationally tractable choice. In Proceedings of the 23rd ACM
Conference on Economics and Computation, pages 28–28, 2022.

A. Friedenberg and T. Kneeland. Beyond reasoning about rationality: Evidence of strategic
reasoning. SSRN 5045798, 2024.

E. Friedman and F. Mauersberger. Quantal response equilibrium with symmetry: Repre-
sentation and applications. In Proceedings of the 23rd ACM Conference on Economics
and Computation, pages 240–241, 2022.

24



J. K. Goeree and P. Louis. M equilibrium: A theory of beliefs and choices in games.
American Economic Review, 111(12):4002–4045, 2021.

J. K. Goeree, C. A. Holt, and T. R. Palfrey. Risk averse behavior in generalized matching
pennies games. Games and Economic Behavior, 45(1):97–113, 2003.

J. K. Goeree, C. A. Holt, and T. R. Palfrey. Regular quantal response equilibrium.
Experimental Economics, 8:347–367, 2005.

J. K. Goeree, C. A. Holt, and T. R. Palfrey. Quantal response equilibrium: A stochastic
theory of games. Princeton University Press, 2016.

J. K. Goeree, C. A. Holt, and T. R. Palfrey. Stochastic game theory for social science: A
primer on quantal response equilibrium. In Handbook of Experimental Game Theory,
pages 8–47. Edward Elgar Publishing, 2020.

S. Govindan and R. Wilson. Axiomatic equilibrium selection for generic two-player games.
Econometrica, 80(4):1639–1699, 2012.

P. A. Haile, A. Hortaçsu, and G. Kosenok. On the empirical content of quantal response
equilibrium. American Economic Review, 98(1):180–200, 2008.

L. P. Hansen and T. J. Sargent. Robust control and model uncertainty. American Economic
Review, 91(2):60–66, 2001.

J. C. Harsanyi and R. Selten. A general theory of equilibrium selection in games, volume 1.
The MIT Press, 1988.

B. Kőszegi and F. Matějka. Choice simplification: A theory of mental budgeting and naive
diversification. The Quarterly Journal of Economics, 135(2):1153–1207, 2020.

R. D. Luce. Individual Choice Behavior: A theoretical analysis. John Wiley and Sons, Inc,
1959.

E. Mazumdar, K. Panaganti, and L. Shi. Tractable equilibrium computation in Markov
games through risk aversion. arXiv preprint arXiv:2406.14156, 2024.

R. D. McKelvey and T. R. Palfrey. Quantal response equilibria for normal form games.
Games and Economic Behavior, 10(1):6–38, 1995.

R. D. McKelvey, T. R. Palfrey, and R. A. Weber. The effects of payoff magnitude and
heterogeneity on behavior in 2× 2 games with unique mixed strategy equilibria. Journal
of Economic Behavior & Organization, 42(4):523–548, 2000.

25



L. P. Metzger and M. O. Rieger. Non-cooperative games with prospect theory players and
dominated strategies. Games and Economic Behavior, 115:396–409, 2019.

H. Moulin. Cooperative microeconomics: A game-theoretic introduction. Princeton Univer-
sity Press, 1995.

X. Mu, L. Pomatto, P. Strack, and O. Tamuz. Monotone additive statistics. Econometrica,
92(4):995–1031, 2024.

H. Norde, J. Potters, H. Reijnierse, and D. Vermeulen. Equilibrium selection and consistency.
Games and Economic Behavior, 12(2):219–225, 1996.

M. J. Osborne and A. Rubinstein. Games with procedurally rational players. American
Economic Review, 88(4):834–847, 1998.

B. Peleg and S. Tijs. The consistency principle for games in strategic form. International
Journal of Game Theory, 25:13–34, 1996.

D. Read, G. Loewenstein, and M. Rabin. Choice bracketing. Journal of Risk and uncertainty,
19(1):171–197, 1999.

A. E. Roth. Axiomatic models of bargaining, volume 170. Springer Science & Business
Media, 2012.

F. Sandomirskiy, P. H. Sung, O. Tamuz, and B. Wincelberg. Independence of irrelevant
decisions in stochastic choice. arXiv preprint arXiv:2312.04827, 2025.

J. Shalev. Loss aversion equilibrium. International Journal of Game Theory, 29:269–287,
2000.

T. Strzalecki. Axiomatic foundations of multiplier preferences. Econometrica, 79(1):47–73,
2011.

W. Thomson. The axiomatics of economic design: An introduction to theory and methods,
volume 1. Springer Nature, 2023.

W. Thomson. Consistent allocation rules. Technical report, University of Rochester, 2024.

M. Voorneveld. An axiomatization of the Nash equilibrium concept. Games and Economic
Behavior, 117:316–321, 2019.

J. Weinstein. The effect of changes in risk attitude on strategic behavior. Econometrica,
84(5):1881–1902, 2016.

26



J. R. Wright and K. Leyton-Brown. Predicting human behavior in unrepeated, simultaneous-
move games. Games and Economic Behavior, 106:16–37, 2017.

A. Yekkehkhany, T. Murray, and R. Nagi. Risk-averse equilibrium for games. arXiv
preprint arXiv:2002.08414, 2020.

27



A Proof of Theorem 1

We begin by introducing a number of definitions and establishing a key lemma. Recall
that S satisfies expectation-neutrality if for any G = (A, u) and p ∈ S(G), if E[ui(a, p−i)] =
E[ui(b, p−i)], then pi(a) = pi(b). A solution concept S satisfies interiority if every action in
every game is played with positive probability, that is, for every game G = (A, u), solution
p ∈ S(G), and player i ∈ N , we have pi(ai) > 0 for each ai ∈ Ai.

Lemma 1. If S permits bracketing and satisfies expectation-neutrality, interiority, expectation-
monotonicity, and anonymity, then S is a refinement of LQREλ for some λ ≥ 0.

Proof of Lemma 1. We first show that S coincides with LQREλ on a particular class of
games where all but one player have a single action. Fix a player i ∈ N and consider for
each x ∈ R the game Gx = (A, u), where Ai = {a0, ax}, and payoffs of the player i are
given by ui(a0, a−i) = 0 and ui(ax, a−i) = x, while all the other players have a single action
and receive a payoff of zero for all action profiles. Fix for each Gx a solution px ∈ S(Gx),
denote by rx = px

i (ax) the probability that player i chooses ax under px in the game Gx,
and define

f(x) = log
(

rx

1 − rx

)
,

which is well-defined by interiority.
We aim to demonstrate that f(x) = λ · x and so S(Gx) = LQREλ(Gx). By bracketing,

for all x, y ∈ R it holds that px × py × px+y ∈ S(Gx ⊗ Gy ⊗ Gx+y). The actions (ax, ay, a0)
and (a0, a0, ax+y) yield the same payoffs, and hence by expectation-neutrality,

rxry(1 − rx+y) = (1 − rx)(1 − ry)rx+y.

Rearranging and taking logs, we get f(x + y) = f(x) + f(y), Cauchy’s functional equation.
Since S satisfies expectation-monotonicity, applying bracketing to the composite game
Gx ⊗ Gx′ for x > x′ yields that rx is increasing in x, since the payoff for (ax, a0) is larger
than for (a0, ax′), and so

rx(1 − rx′) ≥ (1 − rx)rx′ .

Thus f is nondecreasing. Since all monotone solutions to the Cauchy equation are linear,
f(x) = λx, for some λ ≥ 0.

Fix any G = (B, v) and q ∈ S(G), with b, c ∈ Bi. Let x = E[vi(b, q−i)] and y =
E[vi(c, q−i)]. By bracketing, s := q × px−y ∈ S(G ⊗ Gx−y). Let w denote the payoff map
for G ⊗ Gx−y. Note that E[wi((b, a0), s−i)] = E[wi((c, ax−y), s−i)] = x. By expectation-
neutrality,

qi(b)(1 − rx−y) = qi(c)rx−y.
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Rearranging, we have

qi(b)
qi(c) = rx−y

1 − rx−y
= exp(f(x − y)) = exp(f(x)) exp(f(−y)).

Since c was arbitrary,

qi(b) ∝ exp(f(x)) = exp(λx) = exp(λE[vi(b, q−i)]),

for some λ ≥ 0. By anonymity, this holds for all i ∈ N .

We are now ready to prove Theorem 1.

Proof of Theorem 1. Consider the game G with action sets A1 = {h, ℓ} and Ai = {c} for
i ̸= 1, and where the payoff for player 1 is 1 when playing h and 0 when playing ℓ. Let
p ∈ S(G). By Claim 1, if p1(h) = 1, then S is a refinement of Nash.

For the remainder of this proof, suppose that p1(h) < 1. We will show S is a refinement
of LQREλ for some λ ≥ 0. First, we show that S satisfies interiority. By anonymity,
it is without loss of generality to suppose, toward a contradiction, that there is a game
H = (B, v) with q ∈ S(H) and a, b ∈ B1 such that q1(a) = 0 < q1(b). Let n >

E[v1(b, q−1)] − E[v1(a, q−1)], and, as previously, consider that r := q × pn ∈ S(H ⊗ Gn).
However,

E[u1((h, . . . , h, a), r−1)] = n + E[v1(a, q−1)] > E[v1(b, q−1)] = E[u1((ℓ, . . . , ℓ, b), r−1)],

while
r1(h, . . . , h, a) = (p1(h))nq1(a) = 0 < r1(ℓ, . . . , ℓ, b) = (p1(ℓ))nq1(b),

violating expectation-monotonicity.
We now show that S also satisfies expectation-neutrality. By anonymity, it is without

loss of generality to suppose, toward a contradiction, that there is a game H = (B, v)
with q ∈ S(H) and a, b ∈ B1 such that E[v1(a, q−1)] = E[v1(b, q−1)], while q1(a) < q1(b).
By interiority we may choose n such that

(
q1(b)
q1(a)

)n
> p1(h)

p1(ℓ) . By bracketing, r := qn × p ∈
S(Hn ⊗ G). However, E[u1((h, a, . . . , a), r−1)] > E[u1((ℓ, b, . . . , b), r−1)], while

r1(h, a, . . . , a) = (q1(a))np1(h) < (q1(b))np1(ℓ) = r1(ℓ, b, . . . , b),

violating expectation-monotonicity.
Since S satisfies the hypotheses of Lemma 1, there is a λ ≥ 0, such that for any

i ∈ N, G = (A, u), and p ∈ S(G),

pi(a) ∝ exp(λE[ui(a, p−i)]).
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B Preliminary Results on Monotone Additive Statistics

In this appendix we prove two results on monotone additive statistics that will be useful in
a number of our proofs. See §4 for a discussion of monotone additive statistics and related
notation.

Mu, Pomatto, Strack, and Tamuz (2024) provide a characterization of monotone
additive statistics on the domain of all compactly supported lotteries. However, lotteries
originating from finite normal form games necessarily have a finite support. We show that
the characterization of monotone additive statistics extends to those statistics that are
defined on this restricted set of lotteries.

Let ∆finite be the set of all lotteries with finitely many real-valued outcomes. We denote
by ∆Q ⊂ ∆finite the set of all lotteries with a finite number of outcomes and rational-valued
CDFs. Lotteries from ∆Q are convenient because of the following remark, which we use
below to construct games that result in a prescribed payoff distribution of an action under
minimal assumptions on the solution concept.

Remark 1. Any X ∈ ∆Q can be represented as a random variable defined on the probability
space (Ω = {1, . . . , m}, 2Ω, ν), where ν is the uniform distribution, m ∈ N, and X : Ω → R.

Our first step is to demonstrate that ∆Q is rich enough to approximate any compactly
supported lottery in a monotone way, in particular, any lottery in ∆finite. For a compactly
supported lottery X with CDF F , we denote by

¯
Xn the lottery in ∆Q with CDF

¯
Fn defined

by
¯
Fn(t) = 1

n!⌈n! · F (t)⌉. Likewise, denote by X̄n the lottery with CDF F̄n defined by
F̄n(t) = 1

n!⌊n! · F (t)⌋. Note that for all n,

¯
Xn ≤FOSD ¯

Xn+1 ≤FOSD X ≤FOSD X̄n+1 ≤FOSD X̄n, (2)

since first-order dominance is equivalent to having a lower CDF (pointwise). Note also
that if X ∈ ∆Q then

¯
Fn = F = F̄n for all n large enough, since F only takes finitely many

rational values, and thus n! · F (t) is an integer once n! is larger than these values’ lowest
common denominator.

We seek to show that the sequences of lotteries (
¯
Xn)n and (X̄n)n provide an approxi-

mation for X. To this end we require a technical lemma about stochastic dominance in
large numbers. Recall that we identify a lottery X with a distribution over R, and write
X + Y for the lottery corresponding to the sum of outcomes independently sampled from
X and Y . For m ∈ N, let Xm denote the sum of m independent copies of X.

Definition 12. Let X and Y be compactly supported lotteries. Say X dominates Y in large
numbers, denoted X >L Y , if there exists M ∈ N such that for all m ≥ M , Xm >FOSD Y m.

The following result is due to Aubrun and Nechita (2007):
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Proposition 3 (Aubrun and Nechita). Let X and Y be compactly supported lotteries with
Ka[X] > Ka[Y ] for all a ∈ R. Then X >L Y .

If Φ: ∆Q → R is monotone and additive and X, Y ∈ ∆Q then X >L Y implies that
Φ(X) ≥ Φ(Y ), since

Φ(X) = 1
m

Φ(Xm) ≥ 1
m

Φ(Y m) = Φ(Y ),

where the first and last equalities follow from additivity, and the inequality holds for m

large enough since X >L Y , and by the monotonicity of Φ.

Lemma 2. Let Φ: ∆Q → R be a monotone additive statistic and X ∈ ∆finite. Then

lim
n

Φ[
¯
Xn] = lim

n
Φ[X̄n].

Proof. Let F denote the CDF of X. Since X ∈ ∆finite, there is a closed interval I ⊂ R
containing all the values X that takes with positive probability. Denote by ∆I the set of
all lotteries supported on I. Lotteries X, X̄n, and

¯
Xn belong to ∆I .

Define a sequence of functions (gn)n with gn : R → R by gn(a) = Ka[X̄n] − Ka[
¯
Xn].

For any a ∈ R, we have limn gn(a) = 0, since X̄n and
¯
Xn converge to X weakly, and Ka,

considered as a mapping ∆I → R, is continuous in the weak topology. Consider now
a = ±∞. Recall that K−∞ and K∞ are the leftmost and the rightmost points of the support,
respectively. Therefore, limn gn(a) = 0 also for a = ±∞. Indeed, K−∞[

¯
Xn] = K−∞[X]

for all n and K−∞[X̄n] = min{t | F̄n(t) > 0} converges to K−∞[X] = min{t | F (t) > 0}.
Thus limn gn(−∞) = 0, and an analogous argument shows that limn gn(∞) = 0.

As each Ka is monotone with respect to first-order dominance, gn+1(a) ≤ gn(a) for
any a and n. Note that each gn is a continuous function of a. Thus, (gn)n is a decreasing
sequence of continuous functions such that gn(a) → 0 for each a from the compact set R.
By Dini’s theorem, monotone pointwise convergence to a continuous function on a compact
set implies uniform convergence. Thus, for each ε > 0, there exists M ∈ N such that for
n ≥ M ,

Ka[
¯
Xn + ε] = Ka[

¯
Xn] + ε > Ka[X̄n],

for all a ∈ R. By Proposition 3 and the remark following it, Φ[
¯
Xn] + ε ≥ Φ[X̄n]. Taking

the limit as ε goes to zero, we conclude that limn Φ[
¯
Xn] = limn Φ[X̄n].

Lemma 3. Let Φ: ∆Q → R be a monotone additive statistic. Then

Φ[X] =
∫
R

Ka[X] dµ(a)

for some Borel probability measure µ on R.
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Proof of Lemma 3. Let Φ: ∆Q → R be a monotone additive statistic and fix a lottery X

that is compactly supported. As above, we denote by
¯
Xn the lottery in ∆Q with CDF

¯
Fn(t) = 1

n!⌈n! · F (t)⌉. Define the real-valued function Ψ on the set of compactly supported
lotteries by Ψ[X] = limn→∞ Φ[

¯
Xn]. By (2), (

¯
Xn)n is an increasing sequence in terms of

first-order dominance, so Ψ[X] ≥ Φ[
¯
Xn] for all n. For X ∈ ∆Q,

¯
Xn and X have the same

distribution for all n large enough (see the remark after (2)), Ψ[X] = limn Φ[
¯
Xn] = Φ[X],

i.e., Ψ extends Φ.
Let X, Y be compactly supported lotteries. If X ≥FOSD Y , then

¯
Xn ≥FOSD ¯

Yn for all n,
so Ψ[X] ≥ Ψ[Y ], and Ψ is monotone. Moreover, if X and Y are independent, then the
minima and maxima of

¯
Xn +

¯
Yn and (X + Y )n converge to those of X + Y . Additionally,

they both converge in distribution to X + Y , so, by the same argument as in the proof of
Lemma 2, limn Φ[

¯
Xn +

¯
Yn] = limn Φ[(X + Y )n]. It thus holds that

Ψ[X + Y ] = lim
n→∞

Φ[(X + Y )n] = lim
n→∞

Φ[
¯
Xn +

¯
Yn]

= lim
n→∞

Φ[
¯
Xn] + Φ[

¯
Yn] = Ψ[X] + Ψ[Y ].

Hence, by the characterization of Mu, Pomatto, Strack, and Tamuz (2024), Ψ[X] =∫
R Ka[X] dµ(a) for some Borel probability measure µ on R. On its domain ∆Q, the

statistic Φ coincides with Ψ and thus admits the same representation.

Lemma 4. Let Φ: ∆Q → R be a monotone statistic. If Φ is additive for all lotteries (not
necessarily independent), then Φ is the expectation.

Proof of Lemma 4. As in Remark 1, we consider each finite probability space (Ω =
{1, . . . , m}, 2Ω, ν), where ν is the uniform distribution on Ω. Each X ∈ ∆Q can be
represented as a random variable X : Ω → R for a large enough m. We require that
Φ[X + Y ] = Φ[X] + Φ[Y ] for any random variables X, Y : Ω → R.

For X : Ω → R, we may write X = ∑
ω I(ω)X(ω), where I denotes the indicator function.

For each ω ∈ R, define fω : R → R by fω(x) = Φ[I(ω) · x], so Φ[X] = ∑
ω fω(X(ω)). It

follows that each fω is a monotone additive function and is therefore linear. Thus there
is Z ∈ RΩ such that Φ[X] = Z · X for all X. Since Φ only depends on the distribution
of X and µ is uniform, Φ[X] = Φ[X ◦ π] for any permutation π : Ω → Ω, which is only
possible for constant Z. Finally, since Φ is a statistic, it maps any constant random
variable to its value, so Z(ω) = 1

m for all ω. We have thus shown that for any X : Ω → R,
Φ[X] = 1

|Ω|
∑

ω X(ω) = E[X].

C Proof of Proposition 1

We show the two parts of the proposition in two separate claims: Claim 2 and Claim 3.
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Given λ ≥ 0 and Φ =
∫

Kt dµ(t), we prove in Claim 2 that every game G = (A, u) has an
LQREλΦ equilibrium. A natural approach would be to follow the proof of the existence of
quantal response equilibria by defining the quantal response operator T : ∏

i ∆Ai →
∏

i ∆Ai

by Ti(p)(ai) ∝ exp(λΦ[ui(ai, p−i)]) and applying a fixed point theorem. The issue is that
when µ has positive mass at t = ∞ or t = −∞, then T is not continuous, and so we cannot
apply Brouwer’s fixed point theorem.

To overcome this issue, we define a closely related, continuous operator T ′, apply the
fixed point theorem to it, and then show that this is also a fixed point of T , and hence an
equilibrium. To define T ′, fix i ∈ N, ai ∈ Ai and p ∈

∏
i ∆Ai. Let L : R×Ai ×

∏
j ̸=i ∆Aj →

R be given by

L(t, ai, p−i) =


Kt[ui(ai, p−i)] if t ∈ R

mina−i ui(ai, a−i) if t = −∞

maxa−i ui(ai, a−i) if t = +∞.

(3)

That is, when t ∈ R, L(t, ai, p−i) is equal to the monotone additive statistic Kt, evaluated on
the lottery that player i gets when playing ai and when the rest of the players play p−i. For
t ∈ {−∞, +∞}, L(t, ai, p−i) is independent of pi, and returns the minimum or maximum
payoff that the action ai can yield. Let Φ′[ai, p−i] =

∫
R L(t, ai, p−i) dµ(t). Note that if p−i

is totally mixed then Φ′[ai, p−i] = Φ[ui(ai, p−i)]. Note also that if µ({−∞, +∞}) = 0 then
Φ′[ai, p−i] = Φ[ui(ai, p−i)] for all p−i.

Define T ′ : ∏
i ∆Ai →

∏
i ∆Ai by

T ′
i (p)(ai) ∝ exp(λΦ′[ai, p−i]). (4)

To prove the existence of LQREλΦ equilibria, we show that T ′ is continuous, and that its
fixed points coincide with those of T , and hence are equilibria.

Claim 2. Let Φ =
∫

Ka dµ(a) be a monotone additive statistic. Then there is an LQREλΦ
equilibrium for every game, for every λ ≥ 0.

Proof. Fix λ ≥ 0, Φ =
∫

Ka dµ(a), and let G = (A, u). Define L and T ′ as in (3) and (4).
For t ∈ R, the map p−i 7→ L(t, ai, p−i) varies continuously in p−i. It is also (trivially)

continuous when t ∈ {−∞, +∞}, since then it does not depend on p−i. It follows that
L(t, ai, p−i) is continuous in p−i for all t ∈ R and ai ∈ Ai.

We show that T ′ has a fixed-point. Since L(t, ai, p−i) is continuous in p for all t ∈ R
and

|L(t, ai, p−i)| ≤ max
a−i

|ui(ai, a−i)|,
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by the dominated convergence theorem and the continuity of L,

lim
pn→p

Φ′[ai, (pn)−i] = lim
pn→p

∫
L

(
t, ai, (pn)−i

)
dµ(t)

=
∫

lim
pn→p

L
(
t, ai, (pn)−i

)
dµ(t) =

∫
L (t, ai, p−i) dµ(t) = Φ′[ai, p−i],

hence, T ′ is continuous in p. Since ∏
i ∆Ai is convex and compact, T ′ has a fixed-point q∗

by Brouwer’s fixed-point theorem. Since T ′ maps every mixed strategy profile to a totally
mixed strategy profile, q∗ must be totally mixed. We thus have

q∗
i (ai) ∝ exp(λΦ′[ai, q∗

−i]) = exp(λΦ[ui(ai, q∗
−i)]),

as Φ and Φ′ agree when i’s opponents play totally mixed strategy profiles. Hence we have
shown that an LQREλΦ equilibrium exists.

Next, we show the second part of the proposition:

Claim 3. Let Φ =
∫

Ka dµ(a) be a monotone additive statistic. Then there is a NashΦ

equilibrium for every game if and only if µ({−∞, +∞}) = 0.

Proof. The existence of NashΦ equilibria for µ({−∞, +∞}) = 0 follows from Kakutani’s
fixed-point theorem since the best response correspondence is upper hemicontinuous for
such µ. Alternatively, we can show the existence of NashΦ as a limit point of LQREλΦ.

Next, we demonstrate how to construct a game with no NashΦ equilibrium when µ places
a positive weight on the minimum or maximum. For such a Φ, let ε = µ(−∞) + µ(+∞)
and consider the game in table 4.

a2 b2

a1 (1 + 1
ε , 0) (0, 1)

b1 (−1
ε , 1) (1, 0)

Table 4: Variant of matching pennies for which extremal NashΦ equilibria do not exist.

Since pure NashΦ equilibria coincide with pure Nash equilibria for all Φ, it is easy to see
that the game has no pure equilibria. Likewise, there are no equilibria where either player
plays a pure strategy, since the best responses to pure strategies in this game are pure
for all Φ. In particular, any supposed NashΦ equilibrium q would have player 2 playing a
totally mixed strategy. We thus have

Φ[u1(a1, q2)] − Φ[u1(b1, q2)] = (µ(−∞) + µ(+∞)) · 1
ε

+
∫
R

Kt[u1(a1, q2)]︸ ︷︷ ︸
nonnegative

dµ(t) −
∫
R

Kt[u1(b1, q2)]︸ ︷︷ ︸
≤1

dµ(t) ≥ 1 − µ(R) · 1 = ε > 0.
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This contradicts the assumption that q is a totally mixed NashΦ equilibrium, which would
require that Φ[u1(a1, q2)] = Φ[u1(b1, q2)].

D Proof of Proposition 2

Consider a solution concept S that permits bracketing and satisfies distribution-monotonicity,
and anonymity. For such S, Proposition 2 claims that S is either a refinement of FOSD-
Nash or a refinement of FOSD-QRE. We prove this proposition by showing the following
dichotomy:

1. If players never play strictly dominated actions, then S is a refinement of FOSD-Nash.

2. If players play a strictly dominated action in some game, then S is a refinement of
FOSD-QRE.

We consider each of the two cases separately in Claims 4 and 5 below. The proposition
follows directly from them. To prove Claim 4, we first provide a condition under which
adding independent lotteries to lotteries ranked with respect to first-order stochastic
dominance preserves the dominance ranking.

Lemma 5. Let X, Y, A, and B be compactly supported lotteries with X >FOSD Y , max(A) >

max(B) and min(A) > min(B). Then there exist m, n ∈ N such that

Xm + An >FOSD Y m + Bn.

Proof. Since X >FOSD Y , we have Ka[X] > Ka[Y ] for all a ∈ R and Ka[X] ≥ Ka[Y ] for a =
±∞. Moreover, Ka[A] > Ka[B] for a = ±∞. By continuity of Ka in a, there exists M > 0
such that Ka[A] > Ka[B] for all a ∈ R \ [−M, M ]. Consider t = mina∈[−M,M ](Ka[X] −
Ka[Y ]) > 0 and s = mina∈[−M,M ](Ka[A] − Ka[B]). Choose d ∈ N such that d · t + s > 0.
It thus follows from Proposition 3 that Xd + A >L Y d + B. The result follows from the
definition of >L.

To make use of the above lemma, we construct a variant of matching pennies such
that any solution must involve someone playing, with positive probability, an action that
generates a lottery with a lower max and min than its alternative.

Lemma 6. There exists a game H for n ≥ 2 players, with integral payoffs, and such
that for all mixed strategy profiles p, there is a player i and actions ai, bi ∈ Ai such that
pi(bi) > 0 and min[ui(bi, p−i)] < min[ui(ai, p−i)] and max[ui(bi, p−i)] < max[ui(ai, p−i)].
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a2 b2

a1 (2, 0) (0, 1)
b1 (−1, 1) (1, 0)

Table 5: Variant of matching pennies

Proof. Let H be the game in which players 1 and 2 play the game described in Table 5,
and the remaining players’ actions do not affect the payoffs of players 1 and 2.

Since this game has no pure Nash equilibria, any pure strategy profile has the desired
property for whichever of players 1 and 2 has a profitable deviation. It is easy to verify
that if p has the property that one of the first two players totally mixes and the other plays
a pure strategy, then p has the desired property with respect to the player who is mixing.

Finally, if both players 1 and 2 play totally mixed strategies, then

min[u1(b1, p−1)] = −1 < min[u1(a1, p−1)] = 0,

max[u1(b1, p−1)] = 1 < max[u1(a1, p−1)] = 2.

Thus p has the desired property with respect to player 1.

Claim 4. Suppose S permits bracketing and satisfies distribution-monotonicity. Assume
also that players never play strictly dominated actions. Then S is a refinement of FOSD-
Nash.

Proof. Let H be a game that satisfies the property whose existence is guaranteed by
Lemma 6 (e.g., the one described in Table 5). Fix any p ∈ S(H). By the defining property
of H there is a player i such that i plays with positive probability an action ai that yields
a lottery with a lower max and min than its alternative ai.

Consider a game F = (C, w) where Ci = {a0.5, a0} and payoffs are given by wi(a0.5, · ) =
0.5 and wi(a0, · ) = 0. Note that qi(a0.5) = 1 for any solution q ∈ S(F ), by the assumption
that strictly dominated actions are never played. Consider the composite game H ⊗ F .
By bracketing, p × q is one of its solutions. It puts positive weight on (ai, a0.5) since
pi(ai) · qi(a0.5) > 0, while (ai, a0) has probability zero as pi(ai) · qi(a0) = 0. Since the
payoffs in H are integral, a difference in the max or min of lotteries generated by a player’s
actions is at least 1. Consequently, the payoff distribution of (ai, a0) has strictly higher
maximum and minimum than those of (ai, a0.5):

max(vi(ai, p−i) + wi(a0, q−i)) > max(vi(ai, p−i) + wi(a0.5, q−i)),
min(vi(ai, p−i) + wi(a0, q−i)) > min(vi(ai, p−i) + wi(a0.5, q−i)).

Let G = (A, u) be an arbitrary game with aY , aZ ∈ Ai and r ∈ S(G) such that
ui(aY , r−i) >FOSD ui(aZ , r−i). We need to show that ri(aZ) = 0. Indeed, by Lemma 5
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there exist m, n ∈ N such that

ui(aY , r−i)m +(vi(ai, p−i)+wi(a0, q−i))n >FOSD ui(aZ , r−i)m +(vi(ai, p−i)+wi(a0.5, q−i))n.

By bracketing, rm × pn × qn ∈ S(Gm ⊗ Hn ⊗ F n). Since qi(a0) = 0 and pi(ai), qi(a0.5) > 0,
by distribution-monotonicity, it must be that ri(aZ) = 0.

Claim 5. Suppose S permits bracketing and satisfies distribution-monotonicity, and
anonymity. Also, assume that there is a game GD, a player i, and a solution p ∈ S(GD) in
which player i plays a dominated action with positive probability. Then S is a refinement
of FOSD-QRE.

Proof. By definition, there are actions ah, aℓ in GD and D > 0 such that pi(aℓ) > 0 and
ui(ah, a−i) ≥ ui(aℓ, a−i) + D for all a−i. We show that S must then satisfy interiority.
Let G = (A, u) be any other game, and consider some a ∈ Ai and q ∈ S(G). To prove
interiority, we need to show that qi(a) > 0. Pick some b such that qi(b) > 0. Consider
m ∈ N such that mD > max[ui(b, q−i)] − min[ui(a, q−i)]. By bracketing, r = q × pm is in
S(Gm

D ⊗ G). Denote the payoff map of Gm
D ⊗ G by v, and note that

vi(ah, . . . , ah, a, r−i) >FOSD vi(aℓ, . . . , aℓ, b, r−i).

Therefore, by distribution-monotonicity and bracketing,

ri(ah, . . . , ah, a) ≥ ri(aℓ, . . . , aℓ, b) > 0,

and so qi is totally mixed. We conclude that S satisfies interiority.
We next show that such an S must satisfy distribution-neutrality. Toward a contradic-

tion, suppose that distribution-neutrality is violated in a game G = (A, u). By anonymity,
we can assume that the violation occurs for the same player i that played the dominated
action aℓ in GD. Hence, there is q ∈ S(G) and a, b ∈ Ai, such that ui(a, q−i) = ui(b, q−i),
while qi(a) < qi(b). By assumption p ∈ S(GD) satisfies pi(aℓ) > 0. Pick m ∈ N such that(

qi(b)
qi(a)

)m
> pi(ah)

pi(aℓ) . By bracketing, r = qm × p ∈ S(Gm ⊗ GD). Let v denote the payoff map
of Gm ⊗ GD, and note that vi(a, . . . , a, ah, r−i) >FOSD vi(b, . . . , b, aℓ, r−i), while

ri(a, . . . , a, ah) < ri(b, . . . , b, aℓ),

violating distribution-monotonicity. This contradiction implies that S satisfies distribution-
neutrality.

Claim 4 and Claim 5 together immediately imply Proposition 2.
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E Test Games

In this appendix, we study the test games needed in the proof of Theorem 2 to elicit
players’ preferences over payoff lotteries. This proof will require two classes of such games,
corresponding to the two cases of Proposition 2. The first, Gr,x,ε, will be useful in the first
case, where players play an FOSD-Nash. The second, Hr,x, will be useful for FOSD-QRE.

Recall first the definition of the game Gr,x,ε from (1).18 The next lemma proves the
properties of Gr,x,ε that make it useful as a test game. Namely, that when player 1 chooses
ar they receive (approximately) r, and that in any FOSD-Nash player 2 always mixes
uniformly, so that when player 1 chooses ax, they receive a lottery distributed as the
uniform distribution over {x1, . . . , xm}.

Lemma 7. For each r ∈ R, every nonconstant x ∈ Rm, and ε > 0, the game Gr,x,ε has
the following properties:

1. |u1((ar, π), a2) − r| ≤ ε ∥x∥∞ for all (ar, π) ∈ A1 and a2 ∈ A2;

2. p2 is the uniform distribution over A2 in any FOSD-Nash p.

Proof of Lemma 7. Fix a nonconstant x ∈ Rm, r ∈ R, and ε > 0, and consider the
game Gr,x,ε.

That (1) holds is immediate from the definition of the game. To show (2), suppose
that p is a strategy profile such that every first-order dominated action is played with
probability zero. We need to show that p2 is uniform over A2.

Given a permutation π of {1, . . . , m} denote by x◦π the vector (xπ(1), . . . , xπ(m)) ∈ Rm.
First note that for all π chosen by player 1, x ◦ π must be weakly increasing in p2, i.e., for
s, t ∈ A2, p2(s) > p2(t) =⇒ xπ(s) ≥ xπ(t).19 Indeed, if, for some s, t ∈ A2, p2(s) > p2(t)
while xπ(s) < xπ(t), then π is first-order dominated by π′ which coincides with π except on
{s, t}, where π′(s) = π(t) and π′(t) = π(s).

Fix any π played with positive probability by player 1, and suppose, for the sake of
contradiction, that p2 is not uniform. Since x is nonconstant, we claim that there must
be s, t ∈ A2 with p2(s) > p2(t) and xπ(s) > xπ(t). Indeed, fix any s, t ∈ A2 such that
p2(s) > p2(t). If xπ(s) > xπ(t), we are done. Suppose then that xπ(s) = xπ(t) = c. Since x◦π

is nonconstant, there is an h ∈ A2 such that xπ(h) ̸= c. Consider the case where xπ(h) > c.
Then p2(h) ≥ p2(s), since x ◦ π is weakly increasing in p2. We thus have p2(h) > p2(t) and
xπ(h) > xπ(t), as desired. An identical argument works for the case where xπ(h) < c.

18While this is an n ≥ 2 player game, we write the utilities of the first two players as functions of the
actions of the first two players only, suppressing the actions of the rest.

19In the card game interpretation of this game, this statement means that if player 2 chooses the first
card with probability strictly higher than the second card, then player 1 will order the cards so that the
first card shows a higher payoff than the second.
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We thus have that if p2 is not uniform then there are s, t ∈ A2 with p2(s) > p2(t)
and xπ(s) > xπ(t). We claim that, moreover, for all π′ played with positive probability,
xπ′(s) ≥ xπ′(t), by the weakly increasing property of x ◦ π′. Thus s is first-order dominated
by t for player 2, a contradiction.

We next construct a class of test games in which players must evaluate a rich set of
lotteries against sure things under distribution-neutrality. This setting is much simpler
than the previous, since it is easier to guarantee that players mix uniformly.

For x ∈ Rm, we define Hr,x = (B, v) by B1 = {br, bx}, B2 = {x1, . . . , xm},

v1(br, b2) = r and v1(bx, b2) = xb2 (5)

for all b2 ∈ B2. Let vi be identically zero for all i ̸= 1. As with Gr,X,ε, we write utilities as
just functions of the first two players, since they do not depend on the actions of the rest.

The following lemma summarizes the key features of Hr,x:

Lemma 8. For each r ∈ R and x ∈ Rm, the game Hr,x has the following properties:

1. The action br results in a deterministic payoff of r to player 1, i.e., v1(br, p2) is a
degenerate lottery which yields r;

2. p2 is the uniform distribution over A2 in any FOSD-QRE p.

Proof of Lemma 8. Clearly v1(br, p2) = r, and by distribution-neutrality, p2 is uniform.

F Proof of Theorem 2

Given a lottery X ∈ ∆Q, we can find m > 0 and x ∈ Rm such that X is the uniform
distribution over (x1, . . . , xm). We define the game Gr,X,ε to be equal to the game Gr,x,ε,
for some canonical choice of such x (e.g., the one with minimal m and non-increasing
components). We define Hr,X analogously.

The following lemma shows how certainty equivalents may be deduced from player
1’s mixing probabilities in the games Gr,X,ε under the assumption that players play an
FOSD-Nash. We will refer to X ∈ ∆Q with the understanding that X is a random variable
as in Remark 1, so that Gr,X,ε is a well-defined game.

Lemma 9. Suppose S permits bracketing and is a refinement of FOSD-Nash. Define
Φε : ∆Q → R by

Φε[X] = sup{r ∈ R | ∃p ∈ S(Gr,X,ε), ∃π : A2 → A2 with p1(aX , π) > 0}. (6)

Then the limit Φ[X] = limε→0 Φε[X] exists and is a monotone additive statistic.
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Proof. We first show that the limit exists. Suppose, for the sake of contradiction that
liminfε→0 Φε[X] < limsupε→0 Φε[X] for some X ∈ ∆Q. There then exist δ > 0 and
c > 0 such that for any ε < δ, there are ε1, ε2 < ε with Φε1 [X] + c < Φε2 [X]. Thus,
there exist (A, u) = Gr1,X,ε1 and (B, v) = Gr2,X,ε2 with r1 + c < r2, p ∈ S(A, u), q ∈
S(B, v), such that p1(aX , π) = 0 for all permutations π and q1(bX , σ) > 0 for some
permutation σ. By Lemma 7, we have u1((ar1 , π), p2) + v1((bX , σ), q2) = r1 + ε1X + X

and u1((aX , π), p2) + v1((br2 , σ), q2) = X + r2 + ε2X. For ε small enough,

u1((ar1 , π), p2) + v1((bX , σ), q2) <FOSD u1((aX , π), p2) + v1((br2 , σ), q2).

However, since p1(aX , π) = 0 for all π, there must be π0 so that p1(ar1 , π0) > 0. By
bracketing, p × q ∈ S((A, u) ⊗ (B, v)). This violates distribution-monotonicity, since
p1(ar1 , π0) · q1(bX , σ) > 0, while p1(aX , π0) · q1(br2 , σ) = 0. Hence, the limit Φ[X] exists.

We next show Φ is a monotone additive statistic. Since players play FOSD-Nash, it is
immediate that, for c ∈ R, Φε[c] = (1 − ε)c, so Φ[c] = c; i.e., Φ is a statistic.

We need to show that Φ is additive for independent variables. We will show sub-
additivity; super-additivity follows an identical argument. Let X, Y ∈ ∆Q be independent,
and let r > Φ[X], s > Φ[Y ]. Fix t > r + s and let (A, u) = Gr,X,ε, (B, v) = Gs,Y,ε,
and (C, w) = Gt,X+Y,ε. Fix o ∈ S(A, u), p ∈ S(B, v), and q ∈ S(C, w). By bracketing,
o × p × q ∈ S((A, u) ⊗ (B, v) ⊗ (C, w)). Note that for any permutations π, σ and τ , by
Lemma 7,

u1((ar, π), o2) + u1((as, σ), p2) + u1((aX+Y , τ), q2) = X + Y + ε(X + Y ) + r + s

u1((aX , π), o2) + u1((aY , σ), p2) + u1((at, τ), q2) = X + Y + ε(X + Y ) + t,

where the latter expression first-order dominates the former one. By distribution-monotonicity,
we must have

o1(ar, π) · p1(as, σ) · q1(aX+Y , τ) ≤ o1(aX , π) · p1(aY , σ) · q1(at, τ).

From the definition of Φ, for ε small enough o1(aX , π) = p1(aY , σ) = 0. Since the above
inequality must hold for all π and τ , we see that q1(aX+Y , τ) = 0. Since we can choose r, s,
and t so that t is arbitrarily close to Φ[X] + Φ[Y ], it follows that Φ[X + Y ] ≤ Φ[X] + Φ[Y ].

We next show that Φ is monotone with respect to first-order stochastic dominance. Let
ε > 0, X, Y ∈ ∆Q with X >FOSD Y , and fix r < s. Let (A, u) = Gr,X,ε, (B, v) = Gs,Y,ε,
and fix p ∈ S(A, u) and q ∈ S(B, v). Note that, for all π and σ and for all ε small enough,
since Y <FOSD X and r < s,

u1((ar, π), p2) + v1((bY , σ), q2) = Y + εX + r

<FOSD X + εY + s

= u1((aX , π), p2) + v1((bs, σ), q2).
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Thus, by distribution-monotonicity, p1(ar, π) · q1(bY , σ) ≤ p1(aX , π) · q1(bs, σ). Hence, if
p1(aX , π) = 0 for all π, it must be that q1(bY , σ) = 0 for all σ. Recalling the definition of
Φε in (6), it follows that for any r < s, there is a δ > 0 such that for all ε < δ, if Φε[X] < r

then Φε[Y ] ≤ s. Hence, Φ[X] ≥ Φ[Y ].
Finally, if X and Y have the same distribution then, for any ε > 0, Φ[Y ] − ε =

Φ[Y − ε] ≤ Φ[X] ≤ Φ[Y + ε] = Φ[Y ] + ε, so Φ[X] = Φ[Y ].

Lemma 10. Suppose a solution concept S permits bracketing and is a refinement of FOSD-
QRE. Then there is a monotone additive statistic Φ such that for all G = (A, u), p ∈ S(G),
and a ∈ A1,

p1(a) ∝ exp(λΦ[u1(a, p−1)])

for some λ ≥ 0.

Proof of Lemma 10. For each X ∈ ∆Q, let H0,X = (B, v) be the game defined in (5),
where r = 0. We claim that since S permits bracketing, S(H0,X) is a singleton. Indeed, let
p, q ∈ S(H0,X), so p × q ∈ S(H0,X ⊗ H0,X) by bracketing. Since

v1(bX , p2) + v1(b0, q2) = X = v1(b0, p2) + v1(bX , q2),

it must be that p1(bX) · q1(b0) = p1(b0) · q1(bX). Equivalently, p1(bX) · (1 − q1(bX)) =
(1 − p1(bX)) · q1(bX), so p1 = q1. By distribution-neutrality, pi = qi for i ̸= 1, since they
must both be the uniform distribution over Bi. Hence p = q, and S(H0,X) is a singleton.

Define f : ∆Q → R by

f(X) := log
(

p1(bX)
1 − p1(bX)

)
,

where p is the unique element of S(H0,X). This is finite by interiority.
Let X, Y ∈ ∆Q be independent lotteries and let o ∈ S(H0,X), p ∈ S(H0,Y ), and

q ∈ S(H0,X+Y ). By bracketing, o × p × q ∈ S(H0,X ⊗ H0,Y ⊗ H0,X+Y ). By distribution-
neutrality, (1−o1(bX))·(1−p1(bY ))·q1(bX+Y ) = o1(bX)·p1(bY )·(1−q1(bX+Y )). Rearranging
gives

q1(bX+Y )
1 − q1(bX+Y ) = o1(bX)

1 − o1(bX) · p1(bY )
1 − p1(bY ) .

Taking logs, we have f(X + Y ) = f(X) + f(Y ); i.e., f is additive for independent lotteries.
Since S permits bracketing and satisfies distribution-monotonicity, for X >FOSD Y ,

p ∈ S(H0,X), q ∈ S(H0,Y ), we must have p1(bX) · q1(b0) ≥ q1(bY ) · p1(b0); i.e., p1(bX) ≥
p1(bY ). Hence, f is nondecreasing in first-order dominance. Finally, define g : R → R by
g(x) = f(x) for deterministic lotteries yielding x for sure. Then g(x + y) = f(x + y) =
f(x) + f(y) = g(x) + g(y). Since f is monotone, g must be monotone, so there is a
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λ ∈ [0, ∞) such that f(x) = g(x) = λx for all x ∈ R. Hence, f is a monotone additive
statistic on ∆Q scaled by λ. By Lemma 3, f(X) = λΦ[X], for some monotone additive
statistic Φ on ∆finite.

Fix any G = (A, u), o ∈ S(G) with a, a′ ∈ A1. Let X = u1(a, o−1) and Y = u1(a′, o−1).
Fix n ≥ 1, and let (B, v) = H0,X̄n

, (C, w) = H0,
¯
Yn , and let p ∈ S(H0,X̄n

) and q ∈ S(H0,
¯
Yn).

By bracketing, o × p × q ∈ S(G ⊗ H0,X̄n
⊗ H0,

¯
Yn). By (2),

u1(a, o−1) + v1(b0, p2) + w1(c
¯
Yn , q2) = X +

¯
Yn

<FOSD X̄n + Y

= u1(a′, o−1) + v1(bX̄n
, p2) + w1(c0, q2).

Thus, by distribution-monotonicity,

o1(a) · (1 − p1(bX̄n
)) · q1(c

¯
Yn) ≤ o1(a′) · p1(bX̄n

) · (1 − q1(c
¯
Yn)).

By interiority, we have

o1(a)
o1(a′) ≤

p1(bX̄n
)

1 − p1(bX̄n
) ·

1 − q1(c
¯
Yn)

q1(c
¯
Yn) = exp f(X̄n)

exp f(
¯
Yn) = exp(λΦ[X̄n])

exp(λΦ[
¯
Yn]) .

By a symmetric argument,

exp(λΦ[
¯
Xn])

exp(λΦ[Ȳn])
≤ o1(a)

o1(a′) .

Since these inequalities hold for all n ≥ 1, by Lemma 2,

o1(a)
o1(a′) = exp(λΦ[X])

exp(λΦ[Y ]) .

Since a′ was an arbitrary element of A1,

o1(a) ∝ exp(λΦ[u1(a, o−1)]).

Proof of Theorem 2. Since S satisfies the assumptions of Proposition 2 proved above, S is
either a refinement of FOSD-Nash, or a refinement of FOSD-QRE. In the latter case, S is
a refinement of an LQREλΦ by Lemma 10, and anonymity, which ensures that all players
use the same λ and Φ.

It remains to consider the case that S is a refinement of FOSD-Nash. We show that
in this case S is a refinement of a NashΦ equilibrium, concluding the proof of Theorem 2.
Define the monotone additive statistic Φ: ∆finite → R using Lemma 9 to first define it
on ∆Q and then applying the representation of Lemma 3 to obtain a monotone additive
statistic on ∆finite.
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We will show that in any game only actions maximizing Φ can be played with positive
probability. Let G = (A, u), with a, b ∈ A1, o ∈ S(G), and Φ[u1(a, o−1)] > Φ[u1(b, o−1)].
Let X = u1(a, o−1), Y = u1(b, o−1) so that Φ[Y ] < Φ[X], and denote aX = a and aY = b.

By Lemma 2, there is an n ≥ 1, such that Φ[Ȳn] < Φ[
¯
Xn]. Fix r, s with Φ[Ȳn] < r <

s < Φ[
¯
Xn].

Define

Φε[X] = sup{r ∈ R | ∃p ∈ S(Gr,X,ε), ∃π : A2 → A2 with p1(aX , π) > 0},

as in Lemma 9. By that lemma, there exists δ > 0 such that for all ε < δ, Φε[Ȳn] <

r < s < Φε[ ¯
Xn]. Fix ε < δ, so that by the definition of Φε there is a t ∈ [s, Φε[ ¯

Xn]], a
p ∈ S(Gt,

¯
Xn,ε) and a π such that p1(b

¯
Xn , π) > 0. Let (B, v) = Gt,

¯
Xn,ε and (C, w) = Gr,Ȳn,ε.

Let q ∈ S(Gr,Ȳn,ε), and note that for all σ, q1(cȲn
, σ) = 0. For all ε small enough,

u1(aY , o−1) + v1((b
¯
Xn , π), p−1) + w1((cr, σ), q−1)

= Y +
¯
Xn + r + ε · Ȳn

<FOSD X + t + ε ·
¯
Xn + Ȳn

= u1(aX , o−1) + v1((bt, π), p−1) + w1((cȲn
, σ), q−1)),

by (2) and the fact that r < t. By bracketing, o × p × q ∈ S((A, u) ⊗ (B, v) ⊗ (C, w)).
Thus, by distribution-monotonicity,

o1(aY ) · p1(b
¯
Xn , π) · q1(cr, σ) ≤ o1(aX) · p1(bs, π) · q1(cȲn

, σ).

The right-hand side is zero, since q1(cȲn
, σ) = 0 for all σ. There is therefore a σ0 with

q1(cr, σ0) > 0. Since p1(b
¯
Xn , π) > 0, it must be that o1(aY ) = 0, demonstrating that only

maximizers of Φ can be played with positive probability.
Since S satisfies anonymity, we have now shown that if this case holds, there is a

monotone additive statistic Φ such that for all games G, p ∈ S(G), players i, and ai ∈ Ai,

supp pi ⊆ arg max
ai

Φ[ui(ai, p−i)].

G Proof of Theorem 3

Since S permits bracketing and satisfies distribution-monotonicity, anonymity and interi-
ority, by Theorem 2, S is a refinement of some LQREλΦ. Scale invariance ensures that
Φ belongs to the class of positively homogeneous monotone additive statistics, which we
characterize in the following lemma. We use ∆finite to refer to the set of all lotteries with
finite outcomes.
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Lemma 11. Suppose that Φ: ∆ → R is a monotone additive statistic such that Φ[βX] =
βΦ[X] for all X ∈ ∆finite and some β > 0, β ̸= 1. Then Φ is a convex combination of the
minimum, the maximum, and the expectation.

Proof of Lemma 11. Let β > 0 and let Φ be a monotone additive statistic. By Lemma 3,
Φ[X] =

∫
Ka[X] dµ(a). Then

Φ[βX] =
∫ 1

a
logE[eaβX ] dµ(a)

=
∫

β

aβ
logE[eaβX ] dµ(a)

= β

∫
Kaβ[X] dµ(a)

= β

∫
Ka[X] d(β∗µ)(a).

Denote Ψ[X] =
∫

Ka[X] d(β∗µ)(a), and note that this is also a monotone additive statistic.
Then Φ[βX] = βΨ[X].

Suppose Φ[βX] = βΦ[X] for all X and some β > 0. Hence βΦ[X] = βΨ[X] for all X,
and so Φ = Ψ. By Lemma 5 of Mu, Pomatto, Strack, and Tamuz (2024) it follows that
µ = β∗µ. Since a probability measure on R can only be invariant to rescaling by β ̸= 1 if it
is the point mass at 0, it follows that µ({−∞, +∞, 0}) = 1.

It is straightforward to see that if µ is supported on {−∞, +∞, 0}, then Φ satisfies
Φ[βX] = βΦ[X] for all β > 0. We proceed with the proof of Theorem 3.

Proof of Theorem 3. Since S permits bracketing and satisfies distribution-monotonicity,
anonymity and interiority, by Theorem 2, S is a refinement of some LQREλΦ. Let X ∈ ∆Q

and consider the game Hr,X = (B, v) where r = Φ[X] (see (5)). Any p ∈ S(Hr,X) must
satisfy p1(br) = p1(bX), and so all players play uniform strategies. Hence, by scale invariance,
this is also the case for each p ∈ S(B, 1

2 · v). It follows that Φ[1
2X] = Φ[1

2r] = 1
2r = 1

2Φ[X].
By Lemma 11, Φ is a convex combination of the minimum, the maximum and the
expectation. The desired representation follows by setting λ1 = λµ({−∞}), λ2 = λµ({0})
and λ3 = λµ({+∞}).

H Connections to Brandl and Brandt (2024)

Brandl and Brandt (2024) characterize Nash equilibrium as the unique solution concept sat-
isfying consistency, consequentialism, and rationality. Their work focuses on how negligible
changes in the strategic environment impact behavior, while our approach emphasizes how
players frame multiple unrelated decisions. To further explore the relationship between the
two perspectives, we now outline their axioms.
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Definition 13. A solution concept S is consistent if for any (A, u), (A, v), and α ∈ [0, 1]

S
(
A, u

)
∩ S

(
A, v

)
⊂ S

(
A, αu + (1 − α)v

)
.

Consistency requires that if a strategy profile is a solution to two games, it must also be
a solution to any convex combination of them. Differently stated, given a mixed strategy
profile p, the set of games {G : p ∈ S(G)} that it solves must be convex for consistent S.

Among SREs, only Nash equilibrium and LQREλ satisfy consistency. While our
Theorem 1 characterizes these two solution concepts, consistency is not implied by the
hypotheses of the theorem, as the theorem also allows for refinements. For example,
trembling hand perfect equilibrium is a refinement of Nash equilibrium that permits
bracketing, satisfies expectation-monotonicity and anonymity, but violates consistency.20

To formulate the next axiom, we say that a game G = (A, u) is a blow-up of H = (B, v)
if there exist fi : Ai → Bi such that ui(a) = vi(fi(a)) for all players i and a ∈ A. Given
a mixed strategy profile p in S(G), we denote by q = f(p) the profile in H given by
qi(bi) = pi(f−1

i (bi)).

Definition 14. A solution concept S satisfies consequentialism if for any games H and G

such that G is a blow-up of H, it holds that p ∈ S(G) if and only if f(p) ∈ S(H) for the
witnessing f .

Equivalently, consequentialism means that if two games G, H are identical, except that
G contains an additional action a′

i that is indistinguishable from ai, then the solutions
of the two games are the same, except that the probabilities assigned to ai in H can be
divided in any way between ai and a′

i in G. In other words, duplicating actions should
not affect behavior beyond splitting probabilities. Consequentialism is satisfied by every
NashΦ but is violated by every LQREλΦ.

Definition 15. A solution concept S satisfies rationality if for any game G = (A, u),
player i, and a strictly dominant action ai ∈ Ai, it holds that pi(ai) > 0 for all p ∈ S(G).

That is, players play dominant strategies with positive probability. Distribution-
monotonicity implies rationality and, in particular, rationality is satisfied by all NashΦ

and LQREλΦ.

H.1 Implications of Consistency and Consequentialism

The rationality assumption of Brandl and Brandt is straightforward, and so we focus
on the connection between our axioms and their consequentialism and consistency. In

20See §5 of Brandl and Brandt (2024) for an illustration of a consistency violation by trembling hand
perfect equilibrium.
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particular, we investigate the connection between these properties and our scale-invariance
and bracketing.

First, we point out that consequentialism and consistency imply scale-invariance. In
fact, they imply a much stronger property: S(A, u) ⊂ S(A, α · u) for any game (A, u) and
all α ∈ (0, 1).21 Indeed, consequentialism implies that every mixed-strategy profile is a
solution to the game (A, 0) whose payoff map vanishes for every action. The result then
follows from consistency, since any scaled down game (A, α · u) is the convex combination
(A, α · u + (1 − α) · 0).

Consequentialism and consistency also imply a property that is a weakening of brack-
eting: for any games G and H there exist solutions p ∈ S(G) and q ∈ S(H) such that
p × q ∈ S(G ⊗ H). To see this, we first show that consequentialism and consistency imply
that if p ∈ S(G) and q ∈ S(H) then p × q solves the game with the same action space as
G ⊗ H but with payoffs halved. We write α · W for a game with the same action set as W

and payoffs scaled by α, so our goal is to show p × q ∈ S
(

1
2(G ⊗ H)

)
. Let G = (A, u) and

H = (B, v). Denote C = A × B and define two auxiliary games Ĝ = (C, û) and Ĥ = (C, v̂)
by

ûi((a1, b1), . . . , (an, bn)) = ui(a) and v̂i((a1, b1), . . . , (an, bn)) = vi(b).

The game Ĝ is a blow-up of G under the map f that projects A × B to A; similarly, Ĥ is a
blow-up of H under the projection to B. Consequentialism implies that p×q ∈ S(Ĝ)∩S(Ĥ).
By consistency, p×q is also a solution to the game

(
C, 1

2 û + 1
2 v̂

)
which is precisely 1

2(G⊗H).
Finally, let p ∈ S(2G) and q ∈ S(2H), so that by consequentialism and consistency
p ∈ S(G), q ∈ S(H), and p × q ∈ S(G ⊗ H), as G ⊗ H = 1

2
(
(2G) ⊗ (2H)

)
.

Curiously, bracketing is not implied by consequentialism and consistency: there are
solution concepts S satisfying these properties, with p ∈ S(G) and q ∈ S(H) such that
p × q ̸∈ S(G ⊗ H). For example, consider ε-Nash that assigns to a game G all mixed
strategy profiles p such that pi(ai) > 0 implies E[ui(ai, p−i)] ≥ maxbi

E[ui(bi, p−i)]−ε. It is
straightforward to check that ε-Nash satisfies consequentialism and consistency. However,
ε-Nash violates bracketing. Indeed, if player i plays an action that is ε-suboptimal in G

then bracketing would imply that they play a 2ε-suboptimal action in G ⊗ G. Of course,
by the main result of Brandl and Brandt (2024), bracketing is implied if we add their
rationality assumption, highlighting another connection between bracketing and rationality.

21This is in contrast with our scale-invariance axiom which only imposes that solutions which are uniform
distributions be invariant to scaling down the payoff map.
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I Strategic Invariance and the Emergence of Expected Utility

Relaxing expectation-monotonicity to distribution-monotonicity yields new families of solu-
tion concepts, developed in §4. That analysis demonstrates that distribution-monotonicity
is much weaker than expectation-monotonicity, even when coupled with bracketing. In this
section, we show that the gap between these axioms can be bridged with the additional
assumption of strategic invariance, which restricts a solution concept’s predictions across
strategically equivalent games.

Definition 16. Games (A, v) and (A, u) are strategically equivalent if for each player i

there exists a function wi : A−i → R such that vi(a) = ui(a) + wi(a−i).

That is, strategically equivalent games share the same sets of actions, and while
payoffs may differ, they must satisfy vi(ai, a−i) − vi(bi, a−i) = ui(ai, a−i) − ui(bi, a−i) for
all ai, bi ∈ Ai and a−i ∈ A−i. In other words, player i’s marginal payoff of switching from
an action ai to another action bi is the same in the two games.

The notion of strategic equivalence is fundamental to the study of solution concepts.
For example, strategically equivalent games have identical sets of Nash and correlated
equilibria. In mechanism design, strategic equivalence is an important tool. It provides
the designer with the flexibility to modify a player i’s transfers without altering their
incentives, simply by adding a quantity that is independent of i’s report. This flexibility is
crucial in mechanisms like VCG, where it helps to achieve the desired normalization of
transfers and, in some environments, budget-balancedness.

Definition 17. A solution concept S satisfies strategic invariance if S(A, u) = S(A, v) for
strategically equivalent games (A, u) and (A, v).

Strategic equivalence is respected by Nash and LQREλ, as well as many other concepts
that do not have a rational expectations component, such as rationalizability and level-k
reasoning.22

Our next theorem shows that strategic invariance—when coupled with bracketing—
becomes a powerful assumption that elevates distribution-monotonicity to expectation-
monotonicity.

Theorem 4. Suppose S satisfies bracketing, strategic invariance, distribution-monotonicity,
and anonymity. Then it satisfies expectation-monotonicity.

Recall that distribution-monotonicity is a rational expectations and monotonicity
axiom, and does not have an expected utility or risk neutrality component. In contrast,

22One could imagine a more restrictive invariance notion that also includes invariance to rescaling of
payoffs. We will not follow that route, since it would rule out LQRE, which are not scale-invariant.
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expectation-monotonicity is a stronger axiom that implies distribution-monotonicity, and
furthermore also has expected utility or risk neutrality components. Theorem 4 thus shows
that strategic invariance is a potent assumption that highly constrains behavior to resemble
risk neutrality.

Combining Theorems 1 and 4, we obtain the following corollary, which offers a founda-
tion for Nash and LQREλ without directly assuming that behavior is driven by expectations.

Corollary 2. Suppose S permits bracketing and satisfies strategic invariance, distribution-
monotonicity, and anonymity, then S is either a refinement of Nash or of LQREλ for
some λ ≥ 0.

The proof of Theorem 4 is provided below. To build intuition, it is helpful to interpret
payoffs as monetary. Under this interpretation, our aim is to understand how strategic
invariance, together with the other axioms, rules out non-trivial risk attitudes.

Strategic invariance immediately implies that players display no wealth effects, since
adding a constant to all payoffs does not change their behavior. To see why strategic
invariance furthermore rules out any non-trivial risk attitudes, consider the following
example of a two-player game. Player 2 has two actions, a2 and b2, and gets payoff 0
regardless of the action profile. For now, assume that this player mixes evenly between
these two actions. Player 1 has two actions, a1 and b1, and gets the payoffs presented on
the left side of Table 6.

a2 b2

a1 0 2
b1 1 1

a2 b2

a1 0 1
b1 1 0

Table 6: Player 1’s payoffs in two strategically equivalent games.

In this game, both actions yield the same expected payoff, but action a1 has variance 1,
whereas action b1 has variance 0, and so would be preferred by any risk-averse player.
Consider now the strategically equivalent game described on the right side of Table 6.
Here, both actions yield the same distribution of payoffs to player 1, and hence risk
attitudes should not influence the choice between a1 and b1. Since this game is strategically
equivalent to the previous, we conclude that under strategic invariance, players would be
indifferent between the two actions in the previous game and so are effectively risk-neutral.

The assumption that player 2 mixes evenly between the two actions is crucial for this
argument and turns out to be non-trivial: if we cannot guarantee mixing by player 2, we
cannot conclude anything about the risk attitudes of player 1. But in these games, player 2
has no particular reason to mix, and so the actual proof of Theorem 4 relies on the test
games that we developed for the proof of Theorem 2 (see Appendix E).
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In these games, player 2 mixes, generating a choice between a sure thing and a lottery
for player 1. By applying strategic invariance and the idea behind the simple games in
Table 6, we show that player 1 will choose the sure thing if it is higher than the expectation
of the lottery. To prove Theorem 4, we need to extend this conclusion to all games. This
step relies on Theorem 2.

While strategic invariance is a strong assumption that is suggestive of expected-utility
maximization, it does not imply expected-utility maximization without the additional
assumption of bracketing. To see this, we construct a solution concept for two players
that satisfies strategic invariance as well as distribution-monotonicity, but does not satisfy
expectation-monotonicity. This shows that bracketing is an important component in
achieving expectation-monotonicity.

Consider the following variant of matching pennies. We suppose that for this game, and
for all strategically equivalent games, the solution concept S is the singleton solution in
which player 1 mixes uniformly (violating expectation-monotonicity), and player 2 chooses
a2 with probability 1/3 and b2 with probability 2/3.

a2 b2

a1 (1.5, 0) (0, 1)
b1 (0, 1) (1, 0)

Table 7: Variant of matching pennies

It is easy to see that neither player faces a choice between strictly first ordered
actions. Moreover, one can check that every game in the strategic-equivalence class of
this game has this same property. Hence neither strategic-invariance nor distribution-
monotonicity is violated here. Finally, one can set S to be (say) the Nash solution on
all other strategic-equivalence classes; since we are not assuming bracketing, there is no
interaction across classes. Thus S violates expectation-monotonicity, while satisfying
distribution-monotonicity and strategic invariance.

This example highlights the importance of bracketing in connecting strategic invariance
to expectation-monotonicity. Intuitively, there is a link between strategic invariance and
expectation-monotonicity. However, this intuition requires agents to have a preference over
lotteries, which is not assumed, and is achieved in our setting by the addition of bracketing.

Proof of Theorem 4. Let X, Y ∈ ∆Q. As previously, we represent X and Y as random
variables on (Ω = {1, . . . , m}, 2Ω, ν), where ν is uniform. We consider the two families of
SREs characterized by Theorem 2. First, we consider S that is a refinement of a NashΦ

equilibrium.
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Let r < Φ[X] and ε ∈
(
0, Φ[X]−r

max |X|+1

)
, and let Gr,X,ε = (A, u) be the game defined

in (1).23 We will consider the probability that player 1 chooses the (almost) sure things
(ar, · ). Note that Lemma 7 applies since players never play first-order dominated actions
in any NashΦ equilibrium. We will show that Φ is additive for all lotteries (rather than
only independent ones).

We first show supper-additivity. Let p ∈ S(Gr,X,ε). Since p is a NashΦ equilibrium and

Φ[r + εX] ≤ r + Φ[ε max |X|] ≤ r + Φ
[
(Φ[X] − r) max |X|

max |X| + 1

]
< r + Φ[X] − r = Φ[X],

p1(ar, π) = 0 for all π, and p1(aX , σ) > 0 for some σ. Consider the game (A, v), where
v1(a1, a2) = u1(a1, a2) + Y (σ(a2)) for each (a1, a2) ∈ A1 × A2, and vi = ui for i ̸= 1. Let
p ∈ S(A, v). By strategic invariance p ∈ S(A, v), and by Lemma 7, p2 is the uniform
distribution.

Note that v1((aX , σ), p2) is distributed as X + Y , and v1((ar, σ), p2) is distributed as
r + Y + εX. Since p1((ar, σ)) = 0 and p1((aX , σ)) > 0, it must be that Φ[r + Y + εX)] =
r + Φ[Y + εX] ≤ Φ[X + Y ]. Taking ε → 0, we see that r + Φ[Y ] ≤ Φ[X + Y ].24 Since
r < Φ[X] was arbitrary, it follows that Φ[X] + Φ[Y ] ≤ Φ[X + Y ].

We next show sub-additivity. Let r > Φ[X] and ε ∈
(
0, r−Φ[X]

max |X|+1

)
, and let Gr,X,ε =

(A, u) be the game defined in (1). Let p ∈ S(Gr,X,ε). Since p is a NashΦ equilibrium and

Φ[r + εX] = r + Φ[εX] ≥ r + Φ[−ε max |X|]

≥ r + Φ
[
−(r − Φ[X]) max |X|

max |X| + 1

]
> r − r + Φ[X] = Φ[X],

p1(aX , π) = 0 for all π, and p1(ar, σ) > 0 for some σ. Consider the game (A, v), where
v1(a1, a2) = u1(a1, a2) + Y (σ(a2)) for each (a1, a2) ∈ A1 × A2, and vi = ui for i ̸= 1. By
strategic invariance, p ∈ S(A, v) and by Lemma 7, p2 is the uniform distribution.

Note that v1((aX , σ), p2) is distributed as X + Y , and v1((ar, σ), p2) is distributed as
r + Y + εX. Since p1((aX , σ)) = 0 and p1(ar, σ) > 0, it must be that Φ[r + Y + εX)] =
r + Φ[Y + εX] ≥ Φ[X + Y ]. Then by an analogous argument for sub-additivity, we have
Φ[X]+Φ[Y ] ≥ Φ[X +Y ]. Thus Φ[X +Y ] = Φ[X]+Φ[Y ]. By Lemma 4, Φ is the expectation
on ∆Q, so by Lemma 3, Φ is the expectation.

We next consider the case where S is a refinement of some LQREλΦ equilibrium. If
λ = 0, the result holds trivially. Consider then λ > 0. Note we can apply Lemma 8
since LQREλΦ equilibrium satisfies distribution-neutrality. Given the game Hr,X = (B, v)

23As in Appendix E, we let Gr,X,ε be equal to some Gr,x,ε for x = (x1, . . . , xm) such that the uniform
distribution over {x1, . . . , xm} is X.

24Note that Φ[Y ] + ε min X = Φ[Y + ε min X] ≤ Φ[Y + εX] ≤ Φ[Y + ε max X] = Φ[Y ] + ε max X, so
limε→0 Φ[Y + εX] = Φ[Y ].
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defined in (5) with r = Φ[X], we define a new game (B, w) by w1(b1, b2) = v1(b1, b2)+Y (a2),
and wi = vi for i ̸= 1. Let p ∈ S(B, w). By strategic invariance p2 ∈ S(B, v), so p2 is
uniform by Lemma 8 and w1(br, p2) is distributed as r + Y , while w1(bX , p2) is distributed
as X + Y .

Since r = Φ[X] and p is an LQREλΦ equilibrium, we have

p1(br) = p1(bX) ⇒ Φ[X + Y ] = Φ[r + Y ] = Φ[Y ] + r = Φ[X] + Φ[Y ].

Thus Φ is additive for all lotteries and is therefore the expectation by Lemma 4.

J Non-Expected-Utility Properties of Statistic Response Equilibria

In this section we show that SREs are incompatible with expected-utility maximization,
except for the particular case in which the statistic Φ is of the form Ka[X] = 1

a logE
[
eaX

]
for some a ∈ R.

Definition 18. A solution concept S is compatible with expected utility if there exists a
strictly increasing continuous function f : R → R such that

E
[
f

(
ui(ai, p−i)

)]
> E

[
f

(
ui(bi, p−i)

)]
implies pi(ai) ≥ pi(bi)

for every game G = (A, u), solution p ∈ S(G), player i, and actions ai, bi ∈ Ai.

That is, S is compatible with expected utility if it satisfies expectation-monotonicity
after a monotone reparameterization of payoffs.

Proposition 4. An SRE is compatible with expected utility if and only if it is either
NashKa or LQREλKa

for some a ∈ R and λ ≥ 0.

Proof of Proposition 4. An SRE S is either NashΦ or LQREλΦ for some monotone additive
statistic Φ and λ ≥ 0. For Φ = Ka and a ∈ R, it is immediate that S is compatible with
expected utility, since we can take f to be the CARA utility.

It is left to show that if S is compatible with expected utility, then S is either NashKa or
LQREλKa

. For LQREλΦ where λ = 0, the result is trivial. Otherwise, suppose f : R → R
witnesses that S is compatible with expected utility. Let S have statistic Φ =

∫
Ka dµ(a).

We define the statistic Ψ by Ψ[X] = f−1(E[f(X)]). For any game G and p ∈ S(G),
arg maxa p1(a) ∩ arg maxa Ψ[u1(a, p−1)] ̸= ∅. Moreover, since S is an SRE with statistic Φ,
arg maxa pi(a) ⊂ arg maxa Φ[u1(a, p−1)]. Thus there is an action a ∈ A1 that maximizes
both Φ and Ψ under p−1.

Let X ∈ ∆Q be the uniform distribution over the coordinates of x ∈ Rm and fix r ∈ R
and ε > 0. Suppose first that S = NashΦ and let p ∈ S(Gr,x,ε). By Lemma 7, p2 is the
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uniform distribution, and so an action of the form (ax, π) maximizes Φ under p2 if and only
if Φ[X] ≥ Φ[r + εX], and likewise for Ψ. Since there is an action that maximizes both Φ
and Ψ, by taking ε → 0, we see that Φ[X] ≥ r if and only if Ψ[X] ≥ r, i.e. Φ|∆Q = Ψ|∆Q .

Likewise, if S = LQREλΦ for some λ > 0, we consider any p ∈ S(Hr,x) so that
u1(bx, p2) = X by Lemma 8 . Thus bx maximizes Φ if and only if Φ[X] ≥ r, and likewise
for Ψ. Since there is an action that maximizes both Φ and Ψ, we again conclude that
Φ|∆Q = Ψ|∆Q .

By Lemma 3, there is a statistic on the set of compactly supported lotteries that is
monotone with respect to first-order dominance and coincides with Φ on ∆Q. Moreover,
by (2) and Lemma 2 this extension is unique. We thus conclude that Ψ[X] = Φ[X] for all
compactly supported X.

Since f ◦ Ψ(X) = E[f(X)], Ψ satisfies independence, i.e., for all compactly supported
lotteries X, Y, Z and all β ∈ (0, 1), Ψ[X] ≥ Ψ[Y ] if and only if Ψ[XβZ] ≥ Ψ[YβZ], where
XβZ denotes the compound lottery that equals X with probability β and Z with probability
1−β, and likewise for YβZ. Hence, by Proposition F.1 of Mu, Pomatto, Strack, and Tamuz
(2024), Ψ[X] = Ka[X] for a ∈ R.25

By this result, in LQREλKa
players exhibit behavior that is compatible with expected

utility maximization. To see this directly, we note that their choice probabilities are given
by

pi(ai) ∝ e
λ
a

logE
[

exp(a·ui(ai,p−i))
]
.

Note that this is not the same as logit responding to the transformed payoffs, as in Goeree,
Holt, and Palfrey (2003), which would require

pi(ai) ∝ e
λ
a
E
[

exp(a·ui(ai,p−i))
]
.

Their goal was to introduce risk averse behavior to LQREλ. We conclude that this cannot
be achieved via payoff transformations without giving up on bracketing, while LQREλKa

can incorporate risk attitudes while maintaining bracketing.

K On Addition as a Notion of Separability

In our definition of a composite game we add the payoffs of the component games. While
this might seem like an arbitrary choice, we argue in this appendix that it is the only
reasonable choice, up to isomorphisms.

25Mu, Pomatto, Strack, and Tamuz (2024) consider a weakening of the independence axiom: Φ[X] ≥
Φ[Y ] =⇒ Φ[XβZ] ≥ Φ[YβZ]. They show that if Φ is a monotone additive statistic that satisfies this
property then Φ = Ka for a ∈ R. The stronger independence axiom rules out K−∞ and K+∞ since if
a ∈ {−∞, ∞} and Ka(Z) > Ka(Y ) > Ka(X) then Ka(XβZ) = Ka(YβZ).
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Consider the following alternative definition of the composite game (C, w) = (A, u) ⊗
(B, v) in which C = A × B as in the main text, but w is given by

wi(a, b) = f
(
ui(a), vi(b)

)
,

for some f : R2 → R. That is, players i’s payoff in a composite game is determined by
payoffs in component games but the dependence can be general. The function f here
captures how players perceive combining unrelated payoffs.

To make this a useful notion for our purposes, we would like f to have some simple
properties. First, we would like f to be strictly increasing in each coordinate, to ensure
compatibility with our monotonicity axioms. Continuity is also natural. A choice of f

should also guarantee that a three-fold composite game G ⊗ H ⊗ K is well defined, in the
sense that (G ⊗ H) ⊗ K = G ⊗ (H ⊗ K). This requires that f(f(x, y), z) = f(x, f(y, z)).
That is, f(x, y) = x ⊕ y for some associative operation ⊕ on R.

By a theorem of Aczél (1948), it follows that for any such operation ⊕ there is a strictly
monotone continuous map φ : R → R such that x ⊕ y = φ−1(φ(x) + φ(y)). In other words,
up to an order-preserving reparameterization of the reals, ⊕ is just addition.

We thus argue that our use of addition in the definition of composite games is, in a
sense, without loss of generality.
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