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Abstract

Under the CARA and CRRA utility families, Fechnerian models of stochas-
tic choice—a non-parametric class that includes the logit and probit models—
are known to suffer from the paradoxical property that a more risk-averse
individual is often predicted to choose a riskier lottery more frequently. We
show that the paradox persists under broad generalizations: when noise is
non-Fechnerian, differs arbitrarily across individuals, and even varies across
menus. Paradoxical predictions arise under empirically relevant coefficients
of risk aversion and lotteries, revealing that, even theoretically, parameter
estimates depend on the observed lottery comparisons. We establish that two
utility functions will produce paradoxical reversals whenever the ratio of their
second derivatives is unbounded. Using this characterization, we propose a
number of parametric utility families that do not suffer from this condition,
offering well-behaved alternatives to CARA and CRRA for stochastic choice.
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1 Introduction

A precise understanding of how humans evaluate risk is central to economics. Since
choices are inherently noisy, analysts deploy stochastic choice models to recover
individuals’ risk preferences and noise from choice data. The most widely used
stochastic choice models for this purpose are Fechnerian models, a non-parametric
class that includes the logit and probit models. In practice, the analyst chooses
a functional form for utility and a functional form for noise which maps utility
differences to choice probabilities (e.g., Harrison, List, and Towe, 2007; Von Gaudecker,
Van Soest, and Wengström, 2011; Holzmeister and Stefan, 2021).

However, predictions from these models under CARA or CRRA—the most
commonly used utility functions—suffer from a well-known problem. When two
individuals differ in their risk-aversion parameters but face the same noise, the
more risk-averse individual exhibits more risk-seeking behavior in some choices
(Wilcox, 2008, 2011; Blavatskyy, 2011; Apesteguia and Ballester, 2018). In response
to these critiques, subsequent work has argued that non-monotonicity is particularly
worrisome under homoskedastic noise and has advocated allowing heteroskedasticity
for calibration of noise to utility (Barseghyan, Molinari, O’Donoghue, and Teitelbaum,
2018; O’Donoghue and Somerville, 2024; Keffert and Schweizer, 2024). Moreover, it
is common to model heterogeneity in both preferences and noise and to estimate
them jointly (e.g., Hey and Orme, 1994; Von Gaudecker, Van Soest, and Wengström,
2011; Meissner, Gassmann, Faure, and Schleich, 2023).

In this paper, we show that the problems noted for Fechnerian models are far
more pervasive than previously recognized: they persist even when individuals differ
arbitrarily in their Fechnerian noise, when noise varies across menus, and when noise
takes a more general, non-Fechnerian form. That is, under CARA and CRRA utilities,
none of these generalizations can eliminate the counterintuitive predictions. We thus
propose alternative utility functions that allow for more intuitive comparative statics,
where a more risk-averse individual always chooses safer options more frequently
under various noise specifications. Beyond their intuitive appeal, these comparative
statics align with empirical findings (Bruner, 2017).

To build intuition, we begin with the baseline Fechnerian framework, in which each
individual is associated with a Bernoulli utility function u and a strictly increasing
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function F . We refer to F as a Fechnerian noise structure, where

F (U(X) − U(Y ))

is the probability that X is chosen over Y , and U(X) = E[u(X)]. The most
popular Fechnerian noise structures are CDFs of normal and logistic distributions,
corresponding to probit and logit models. Indeed, any additive random utility models
with i.i.d. shocks fit the Fechnerian framework.1

Our first result is that, for some pairwise choices between a safe and a risky
lottery,2 a more risk-averse individual chooses the risky option more often than a
less risk-averse individual, even when the two differ arbitrarily in their Fechnerian
noise structures (Theorem 1). Thus, the problems identified for the homoskedastic
noise model cannot be resolved by jointly estimating risk and noise, even when noise
is estimated non-parametrically.

For example, consider an analyst who observes Anne and Bob choosing from
three distinct menus—each menu consists of a safe lottery—a sure payoff of $8, $10,
or $14—and a 50–50 risky lottery paying plus or minus $4, $6, or $8 from the sure
amount. The choice probabilities for the safe lotteries are shown in the second and
third columns of Table 1. Assuming CRRA expected utilities for their risk preferences
and normal distributions for their noise structures, Anne is estimated to be more
risk averse and experience less noise than Bob. Indeed, the choice probabilities in
Table 1 correspond to Anne having a CRRA coefficient of 0.8 and noise variance of
0.5, compared to Bob’s 0.3 and 1, respectively.3

1Technically, for F to be strictly increasing, the difference in these shocks must have full support.
2We say that lottery X is safer than lottery Y if X dominates Y in the concave order. Equivalently,

every expected utility maximizer with a concave utility function must prefer X to Y .
3I.e., the analyst deploys the probit model for Anne and Bob

FA(UA(X) − UA(Y )) and FB(UB(X) − UB(Y )),

respectively, where UA and UB are CRRA expected utility functions with relative risk aversions
a and b, and FA and FB are the CDFs of normal distributions with zero means and respective
variances σ2

A and σ2
B .
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Base Lottery Probability of S Probability of 3S

(S vs R) Anne Bob Anne Bob

8 vs 4, 12 0.60 0.57 0.62 0.65
10 vs 4, 16 0.65 0.62 0.69 0.74
14 vs 6, 22 0.64 0.63 0.68 0.77

Table 1: CRRA Choice Probabilities for S with normal errors.

In the last two columns of Table 1, we report the choice probabilities of safe
options whose outcomes are tripled from the base lotteries under the estimated
parameters. Note that when the stakes are increased, Bob chooses safer options more
than Anne from all menus. Thus, despite Anne being estimated as more risk-averse
and more precise, the model predicts that she will behave more risk-seeking than
Bob once the stakes are scaled up.

This reversal pattern does not hinge on these specific CRRA risk coefficients and
noise structures, nor on the specific choice of lotteries. Indeed, given lotteries X

and Y with X safer than Y , we show how to construct lotteries X ′ and Y ′ offering
higher potential rewards, such that X ′ remains safer than Y ′ yet leads to a reversal
(Proposition 2). In the special case that the noise structures satisfy FA(t/σA) =
FB(t/σB) for some σA, σB > 0 (e.g., when both are probit, with different variances
as the example above), a reversal occurs if both lotteries are scaled sufficiently: for
all large enough scales k, Bob chooses kX over kY more frequently than Anne does
(Proposition 1). For CARA utilities, reversals occur after shifting the lotteries by the
same sufficiently large outcome under arbitrary noise structures for Anne and Bob
(Proposition 2). Thus, CARA and CRRA Fechnerian models with arbitrary noise
structures make the perverse and systematic prediction that those most inclined
toward choosing safer options when stakes are small must become the least inclined
when stakes are larger.

Assuming that this reversal pattern does not always bear out in reality—and
indeed Bruner (2017) finds that it does not—our results indicate that the estimates
yielded by these models will be sensitive to the level of stakes that are analyzed,
making them unreliable.4 Indeed, if the analyst instead observed the choice prob-

4This echoes the critique of expected utility in Rabin (2000), which also reveals paradoxes when
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abilities of the scaled lotteries in Table 1, the analyst may conclude that Bob is
more risk-tolerant than Anne, even if he exhibited more risk-averse behavior. As we
illustrate in the tables, the stake increases are often modest, indicating that such
paradoxical non-monotonicities can emerge even in low-stakes experimental settings.
Moreover, this will lead to counterintuitive, or perhaps counterfactual, out-of-sample
predictions.

We next show that the paradoxes of CARA and CRRA Fechnerian models are
not artifacts of overly restrictive Fechnerian noise structures. To this end, we explore
noisy expected utility (NEU) models, which consist of a vNM utility function U

and a noise structure H : R2 → [0, 1] that translates the utilities of two alternatives
into choice probabilities.5 That is, H(U(X), U(Y )) is the probability that X is
chosen over Y . NEU models generalize Fechnerian models by not requiring choice
probabilities to depend only on utility differences. We demonstrate that NEU models
based on CARA or CRRA expected utilities are guaranteed to produce paradoxical
reversals under a mere smoothness condition on noise structures (Theorem 2).

One might suspect, at this point, that these paradoxes arise because H is applied
to vNM utilities, which are just representations of preferences and carry no cardinal
significance. A natural alternative would be to calculate, for each lottery X, its
certainty equivalent u−1(E[u(X)]), and apply H to these certainty equivalents. It
turns out that this does not solve the problem. In fact, we will still have paradoxes,
even if we more generally apply H to f(E[u(X)]) for some strictly increasing f ,
because absorbing f into the noise structure H simply generates a new noise structure
(Corollary 1). These results show that the paradoxical reversals originate from the
structure of CARA and CRRA utilities themselves, rather than from any particular
assumption about noise or utility representation.

We next examine whether allowing noise structures to vary across menus can
eliminate these paradoxes. In a menu-dependent Fechnerian noisy expected-utility
(MNEU) model, each individual is associated with a vNM utility function and a noise
assignment that specifies, for every pair of lotteries, a menu-specific Fechnerian noise

stakes are increased. While Rabin’s result is about the curvature of utility functions in deterministic
models, our result is about the interaction between noise structures and CARA/CRRA utilities.

5We require choice probabilities to be monotone in utility, meaning that H is increasing in its
first argument and decreasing in its second. These models of noise were studied in depth by Tversky
and Russo (1969).
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structure. An important subclass of menu-dependent models arises in the additive
random utility framework, when the random shocks to utility that are associated
with each lottery are independent but not identically distributed. For example,
lotteries with large stakes may induce increased attention and be associated with
less-variable shocks. To rule out pathological noise assignments, we impose a conti-
nuity condition requiring that menus containing similar lotteries yield similar noise
structures. Our next result shows that MNEU models necessarily yield paradoxical
reversals (Theorem 3). Thus, even when allowing for arbitrary noise, varying across
individuals and menus, the CARA and CRRA expected utility functional forms lead
to untenable predictions.

Finally, we turn our attention toward the characterization of families of Bernoulli
utilities that interact well with noise. Following Wilcox (2011), we say that Anne is
stochastically more risk-averse than Bob if Anne consistently chooses safer options
more frequently than Bob. Our final result is that there exist noise structures for
which Anne is stochastically more risk averse than Bob if and only if kuA − uB

is a concave function for some k > 0 (Theorem 4). For twice-differentiable utility
functions, this condition is equivalent to the boundedness of

u′′
B(x)/u′′

A(x),

providing a simple condition to check.6 This condition is not satisfied by a class of
utility functions that generalizes CARA and CRRA.

We conclude by proposing families of utility functions, where the traditional and
stochastic notions of comparative risk agree (Proposition 4). For example, for any
0 ≤ r < s, let crrar and crras be CRRA Bernoulli utility functions with respective
relative risk coefficients r and s. Interpolating between crrar and crras yields a family
of utility functions parameterized by their weight on the more risk averse crras, with
a higher weight corresponding to greater risk aversion.7 These simple families of
utility functions offer well-behaved alternatives for empirical analysis.

6Indeed, for CARA and CRRA utilities, this condition fails, leading to paradoxical reversals in
every model of noise we have considered.

7This works as long as the weight on crras is positive. Otherwise, we will run into the problem
of comparing crrar and crras which leads to reversals.
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2 Related Literature

We contribute to a large body of literature on risky choices in the presence of noise
(e.g., Becker, Degroot, and Marschak, 1963; Harless and Camerer, 1994; Hey and
Orme, 1994; Loomes, Moffatt, and Sugden, 2002; Blavatskyy, 2007). See Wilcox
(2021) for a recent survey. In particular, we study Fechnerian noise structures and
their generalizations. Axiomatic investigations of these models have been undertaken
by Debreu (1958), Tversky and Russo (1969), and Fudenberg, Iijima, and Strzalecki
(2015), among others. See Strzalecki (2025) for an extensive review.

The papers most closely related to ours are Wilcox (2011) and Apesteguia and
Ballester (2018), which demonstrate that CARA and CRRA utilities coupled with
identical Fechnerian noise are problematic: a more risk-averse individual exhibits
more risk-seeking behavior in some pairwise choices.8 Our work builds on their
insights in several ways. First, we allow for heterogeneous noise structures and show
that the paradoxical reversals persist without any parametric assumptions on how
noise differs across individuals (Theorem 1). Second, we show that the reversals
occur under more general non-Fechnerian noise (Theorem 2).

We further allow noise to vary across menus, recognizing that some comparisons
may involve greater cognitive effort or uncertainty. Menu-dependent noise in risky
choice has been extensively studied. Hey (1995), Buschena and Zilberman (2000), and
Loomes (2005) model Fechnerian noise that depends on, for example, value differences
between lotteries and question difficulty. More recently, He and Natenzon (2024) and
Shubatt and Yang (2024) characterize Fechnerian noise that depends on a measure
of distance between alternatives. We show that, under very general conditions,
paradoxes persist even when we allow noise to vary across menus (Theorem 3).

Finally, we characterize which families of utility functions, beyond CARA and
CRRA, suffer from these reversals (Theorem 4) and propose alternative parametric
families of utilities that do not suffer from the problem. This is in contrast with
the solutions proposed by Wilcox (2011) and Apesteguia and Ballester (2018) who
retain CARA and CRRA utilities.

Wilcox (2011) considers a model of menu-dependent noise and shows it is mono-
8Wilcox (2011) shows that other parameterizations of CARA and CRRA utilities also lead to

reversals. This corresponds to two individuals having noise structures that are related by a scale
factor. We study this special case in Proposition 1.
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tone for lotteries over three fixed outcomes. Apesteguia and Ballester (2018) show
that this model is no longer monotone for more than three outcomes and propose
instead the random parameter model, where each individual is associated with a
distribution over CARA or CRRA preferences and chooses probabilistically as if
they draw a random preference from their distribution. Random parameter models
do not lead to paradoxical reversals, but they are based on a different foundation
than traditional models of noise. In particular, in random parameter models there is
no longer a core preference over alternatives such that an individual usually chooses
the more preferred outcome. This is in contrast with our proposal to use alternative
vNM utility functions which maintains the idea that individuals choose according to
a core preference under noise.

We compare the riskiness of lotteries with the concave order of Rothschild and
Stiglitz (1978). In the deterministic setting, Kihlstrom, Romer, and Williams (1981)
and Ross (1981) have noted that insurance and risk premia are not increasing in
the Arrow-Pratt order. Ross (1981) thus proposes a stronger notion of comparative
risk preferences than Arrow-Pratt that leads to monotonicity. Our characterization
result (Theorem 4) shows that this stronger notion implies our condition, and thus
is sufficient to eliminate paradoxical reversals under some noise structures.

Finally, we contribute to a literature examining failures of expected utility
theory in predicting choices across varying ranges of stakes. The most prominent
critique in this area is by Rabin (2000), who demonstrates that within the expected
utility framework, even modest levels of risk aversion exhibited over small-stakes,
imply absurd, counterfactual levels of risk aversion for large stakes. While this
result holds for deterministic choice, Propositions 1 and 2 echo Rabin (2000) in the
stochastic setting: out of sample predictions made from small-stakes observations
are counterintuitive.

3 Preliminaries

We denote by L the set of all bounded real random variables defined over a non-
atomic probability space (Ω, Σ,P). We use the term lotteries to refer to elements of
L. A vNM utility function is a map U : L → R given by U(X) = E[u(X)] for some
strictly increasing, concave, and continuous Bernoulli utility u : R → R.

We consider a decision maker that evaluates lotteries according to such a utility
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function, but chooses stochastically: there is a function H : R2 → [0, 1] such that
they choose lottery X over lottery Y with probability

H(U(X), U(Y )),

where H is increasing in the first argument and decreasing in the second argument. To
ensure that the sum of choice probabilities is 1, we require that H(s, t) + H(t, s) = 1.
We refer to H as a noise structure.

When H is differentiable, we denote by Hi the partial derivative of H with respect
to the ith argument. We denote by H the set of all continuously differentiable noise
structures H such that H1 > 0 and H2 < 0.9 We refer to a model of the form (U, H)
where U is a vNM utility and H ∈ H, as a noisy expected utility (NEU) model.10

We say that X dominates Y in the concave order, denoted X ≥c Y if E[g(X)] ≥
E[g(Y )] for all concave functions g : R → R. We denote the strict part of ≥c by >c.
Recall that X ≥c Y if and only if Y is a mean-preserving spread of X. If X ≥c Y ,
then U(X) ≥ U(Y ) for all vNM utilities U .11 We will often use the variables S and
R when referring to lotteries where S >c R, in order to highlight that S is safer
while R is riskier.

3.1 Stochastic Comparative Risk Aversion

We are interested in comparing the choices of agent A with those of agent B. Each
agent is associated with a stochastic choice model (U, H) consisting of a utility
function and noise structure. We will often refer to agents and their associated
stochastic choice models interchangeably.

We say A is more risk-averse than B if UA(X) ≥ UA(y) implies UB(X) ≥ UB(y)
9This implies that H is strictly increasing in the first argument and strictly decreasing in the

second argument, and furthermore that these partial derivatives do not vanish.
10Notably, choice probabilities resulting from an NEU model (U, H) are monotone in the utility

U . I.e., if U(X) ≥ U(Y ), then X is chosen over any alternative Z more frequently than Y is chosen
over Z. Using a strengthening of this property, Tversky and Russo (1969) characterize a more
general model where the choice probability of X over Y is given by some noise structure H and
some arbitrary utility function V . In Appendix H, we discuss the axiomatic foundations of these
models and characterize when V is a vNM utility.

11Since we defined vNM utilities as expectations of concave Bernoulli utilities, they are increasing
in ≥c.
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for any X ∈ L and degenerate lottery y.12 Suppose these agents have noise structures
HA, HB ∈ H.

Definition 1. We say that S, R ∈ L are paradoxical for A and B, if S >c R, yet

HA(UA(S), UA(R)) < HB(UB(S), UB(R)).

This means that A, the more risk-averse individual, paradoxically exhibits more
risk-tolerant behavior by choosing the safer asset S less frequently than B.

A’s behavior can also be seen as more risk-tolerant in the following sense: Let sA

and sB denote A’s and B’s respective choice probabilities of S. The ex-ante lottery
that A receives is the compound lottery resulting in S with probability sA and in R

with probability 1 − sA, and likewise for B. Since sA < sB, the compound lottery
that A receives is riskier than the one B receives. Since these individuals’ choice
probabilities yield these compound lotteries, A evidently makes riskier choices than
B.

We show that NEU models yield paradoxical lotteries under the Constant Abso-
lute Risk Aversion (CARA) and Constant Relative Risk Aversion (CRRA) utility
specifications, which are the most commonly used parametric families of utility
functions in both theory and practice. CARA and CRRA utilities are defined by

CARAa(X) =

E[X] a = 0

E
[

1−e−aX

a

]
a > 0

(1)

CRRAa(X) =

E
[

X1−a−1
1−a

]
a ̸= 1

E[ln(X)] a = 1,
(2)

where a ≥ 0 is the coefficient of absolute/relative risk aversion. The coefficients
reflect varying levels of risk-aversion, with higher coefficients corresponding to greater
aversion to risk.13 For CRRAa(X) to be well defined, X must be non-negative, which

12This is Yaari (1969)’s notion of comparative risk, which coincides with the Arrow-Pratt notion
of comparative risk since UA and UB are vNM utility functions. I.e., UA being more risk-averse than
UB is equivalent to the concavity of uA ◦ uB

−1, when uA and uB are the corresponding Bernoulli
utility functions to UA and UB. Indeed, CARA and CRRA utilities are totally ordered by this
order.

13Note that there are many possible ways of parameterizing CARA and CRRA preferences,
since applying a positive affine transformation to each Bernoulli utility does not change the
underlying preference/coefficient. Nevertheless, we will show that our results hold for every possible
parameterization of these families.
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is an assumption we maintain whenever referring to CRRA.
In Sections 5 and 6, we show that noisy CARA and CRRA models and their

generalizations yield paradoxical lotteries. To build intuition, we first consider the
special case of Fechnerian models.

4 Fechnerian Models

An important subclass of NEU models yields choice probabilities

H(U(X), U(Y )) = F (U(X) − U(Y )),

where F : R → [0, 1] is a strictly increasing function that is continuously differentiable
with non-vanishing derivative. Moreover, F (t) + F (−t) = 1. We denote by F the
set of all such functions and refer to a model of the form (U, F ), where U is a vNM
utility and F ∈ F , as a Fechnerian noisy expected utility (FNEU) model.14 In these
models, the larger the difference between U(X) and U(Y ), the higher the probability
that X is chosen.

FNEU models are among the most widely used stochastic choice models (Becker,
Degroot, and Marschak, 1963; Loomes, Moffatt, and Sugden, 2002). An important
subclass of FNEU models yields choice probabilities

P(U(X) + ε ≥ U(Y ) + ε′) = F (U(X) − U(Y )), (3)

where ε and ε′ are i.i.d. continuous random variables and F is the CDF of ε − ε′.
This subclass includes many widely used discrete choice models such as the logit and
probit models, where the random shocks are Gumbel and Gaussian, respectively.

In this section, we focus on FNEU models and show that the CARA and CRRA
specifications display paradoxes: they predict that a more risk-averse individual will
sometimes choose a riskier asset more frequently than a more risk-tolerant individual.

Theorem 1. For any FA, FB ∈ F and distinct CARA (CRRA) utilities UA, UB,
there exist paradoxical lotteries for (UA, FA) and (UB, FB).

14The assumptions that F must be continuously differentiable with positive derivative can be
relaxed without affecting our results, provided these assumptions hold at 0. Note that we do not
assume that limt→∞ F (t) = 1, nor that limt→−∞ F (t) = 0, although this will be the case for the
examples we study.
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Theorem 1 is an impossibility result for the commonly used CARA/CRRA-
expected-utility Fechnerian models as paradoxical lotteries arise under arbitrary
pairs of noise structures and risk coefficients. In the case of FA = FB, i.e., when
individuals face the same noise structures, it was shown by Apesteguia and Ballester
(2018) that the probability of choosing the safer option from a pair is non-monotone
in the CARA/CRRA coefficients.15 In practice, however, it is common to model
heterogeneity in both preferences and noise and to estimate them jointly (Hey and
Orme, 1994; Von Gaudecker et al., 2011). Indeed, subsequent work has argued
that non-monotonicity is particularly worrisome under homoskedastic noise and has
advocated allowing heteroskedasticity for calibration of noise to utility (Barseghyan
et al., 2018; O’Donoghue and Somerville, 2024; Keffert and Schweizer, 2024).

Yet, perhaps surprisingly, Theorem 1 demonstrates that non-monotonicity persists
even when noise structures vary arbitrarily across individuals. Specifically, if one
estimates the model (CARAa, FA) for one individual and (CARAb, FB) for another
with a > b, the out-of-sample predictions are for the individual with coefficient a

to choose some safer options less frequently than the individual with coefficient b,
regardless of how FA and FB are fit in-sample. If these out-of-sample predictions are
to be taken seriously, it is unclear that the parameter a reflects greater risk aversion.

Note that choice probabilities are not invariant to reparameterizations of CARA
and CRRA utilities. For example, consider the model (U, F ), where U is a CARA
or CRRA utility and F ∈ F . Let V (X) = 1

c
U(X) + d for some c > 0. While V

represents the same preference as U , replacing U with V has the same effect on
choice probabilities as changing the noise structure from F to G which is defined by
G(t) = F (t/c). However, since G is also a member of F , it follows from Theorem 1
that reparameterizations of the CARA or CRRA utility family cannot resolve the
non-monotonicity.

4.1 Scale-Family Heteroskedasticity

To develop intuition for Theorem 1, we first consider individuals with distinct CARA
or CRRA utilities UA and UB with respective coefficients a and b, where a > b and
whose noise structures are related by a scale factor. That is, FA(t) = F (t/σA) and

15When FA = FB, Theorem 1 follows from Corollary 1 and Proposition 3 of Apesteguia and
Ballester (2018).
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FB(t) = F (t/σB) for some common F ∈ F .16 The choice probabilities of S over R

are then given by

F

(
UA(S) − UA(R)

σA

)
(4)

F

(
UB(S) − UB(R)

σB

)
. (5)

Since F is strictly increasing, the pair (S, R) is paradoxical (i.e., (5) is strictly larger
than (4)) if and only if

UB(S) − UB(R)
UA(S) − UA(R) >

σB

σA

.

Note that σB

σA
, which is the relative noise level, does not depend on the lotteries.

Given this, the next lemma immediately implies that to construct paradoxical S and
R, we can start with any S >c R, and get a paradoxical pair by adding to both a
large enough constant x (in the CARA case) or multiplying both by a large enough
constant (in the CRRA case).

Lemma 1. For any S >c R, a, b > 0, and all x ∈ R and k > 0,

1. CARAb(S + x) − CARAb(R + x)
CARAa(S + x) − CARAa(R + x) = C1 · e(a−b)x

2. CRRAb(k · S) − CRRAb(k · R)
CRRAa(k · S) − CRRAa(k · R) = C2 · ka−b,

for some positive constants C1 and C2.

Note that when a > b, the ratios are strictly increasing in x and α and tend to
infinity. Moreover, these properties hold for any S >c R. We thus have the following
stronger result when noise structures are related by a scale factor.

Proposition 1. Let σA, σB > 0 and F ∈ F . Let FA(t) = F ( t
σA

), FB(t) = F ( t
σB

),
and S >c R. Let UA, UB be distinct CARA utilities and let VA, VB be distinct CRRA
utilities. Then there exist unique x0 and k0 such that

1. S + x and R + x are paradoxical for (UA, FA) and (UB, FB) if and only if
x > x0;

2. kS and kR are paradoxical for (VA, FA) and (VB, FB) if and only if k > k0.
16This is the case, for example, when FA and FB are both normal or both logistic CDFs.
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Proposition 1 highlights two problems with the CARA and CRRA Fechnerian
models. First, there is a disconnect between the standard Arrow-Pratt notion of
comparative risk-aversion developed in the deterministic framework with the resulting
stochastic choice predictions. Namely, more risk-averse individuals are not more
likely to make risk-averse choices. This counterintuitive prediction is contradicted
by empirical evidence that risk aversion is negatively correlated with decision noise,
as measured by the frequency with which individuals choose the concave-order
dominated option (Bruner, 2017).

In terms of estimation, this means that even if Bob chooses safer lotteries more
frequently than Anne, we may conclude that Bob is more risk-tolerant than Anne.17

This is the case, for example, if we only observe the choice probabilities of the scaled
lotteries in Table 1.

Second, these models make the systematic prediction that those most inclined to
choose safer options when stakes are small must become the least inclined once the
stakes grow modestly larger. Even without a specific model of risk aversion in mind,
this prediction is implausible.

4.2 Arbitrary Noise Structures

So far we have considered the special case that FA and FB are related by a scale
factor. To prove the more general case considered in Theorem 1, we establish the
following lemma, which shows that the properties of CARA and CRRA utilities
given in Lemma 1 give rise to non-monotonicity for any FA, FB ∈ F .

Lemma 2. Let FA, FB ∈ F . Let UA and UB be vNM utility functions with UA more
risk averse. Suppose that for each M ∈ R there exist lotteries S >c R such that

UB(S) − UB(R)
UA(S) − UA(R) ≥ M. (6)

Then there exist paradoxical lotteries for (UA, FA) and (UB, FB).

Lemma 2 identifies a sufficient condition on the vNM utility functions to yield
the negativity result in Theorem 1. By Lemma 1, CARA and CRRA utilities satisfy
this condition, and thus Theorem 1 follows immediately from these lemmas.

17This holds under any consistent estimator.
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Let S >c R satisfying (12) for some M ∈ R. The key step of the proof of Lemma 2
is to construct, S ′ >c R′ such that

V (S) − V (R)
U(S) − U(R) = V (S ′) − V (R′)

U(S ′) − U(R′) ,

while making the utility differences, U(S ′) − U(R′), arbitrarily small. To this end, we
consider the menu (S, RλS), where λ ∈ (0, 1) and RλS is distributed as a compound
lottery that yields R with probability λ and S with probability 1 − λ. As λ → 0,
the utility difference between S and RλS vanishes. Lemma 2 exploits the linearity
of vNM utilities, which ensures that the ratio of utility differences is independent of
λ. It also relies on the differentiability of FA and FB to approximate them around 0
by affine functions. Lemma 2 is proved in Appendix A.

Note that by Lemma 1, (12) is satisfied for all concave-ordered lotteries under
sufficient shifting/scaling. Moreover, for CARA utilities, the utility difference U(S +
x)−U(R+x) tends to 0 as x tends to infinity (Lemma 4). For CRRA utilities, on the
other hand, U(kS)−U(kR) increases with k under CRRA coefficients less than unity.
We therefore apply an additional transformation of scaling down the probability of
receiving the risky prospect so that the utility difference is arbitrarily small. Based
on these observations, the following proposition extends the non-monotonicity result
of Proposition 1 to all FA, FB ∈ F .

Proposition 2. Let FA, FB ∈ F and S >c R. Let UA and UB be distinct CARA
utilities and VA and VB be distinct CRRA utilities. Then there exist x0, k0 > 0 such
that

1. S + x and R + x are paradoxical for (UA, FA) and (UB, FB) for x > x0.

2. k · S and k · (RλS) are paradoxical for (VA, FA) and (VB, FB) for k > k0 and λ

small enough.

Proposition 2 is proved in Appendix B. While CARA preferences are invariant to
changes in background wealth, the above proposition shows that non-monotonicity
occurs in FNEU models under CARA utilities for any concave-ordered lotteries under
sufficient background wealth. Likewise, while CRRA preferences are invariant to
the scaling of stakes and to mixing with the safe lottery, these transformations can
always generate a non-monotonicity.
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Proposition 2 demonstrates that non-monotonicity is a pervasive problem. It
holds for all pairs of risk parameters, for all pairs of Fechnerian noise specifications,
and for all concave-ordered lotteries after a transformation that preserves the concave
ordering as well as the family of preferences being measured.

5 Noisy Expected-Utility Models

Recall that an NEU model (U, H) consists of a vNM utility U and noise structure
H ∈ H, where H(U(X), U(Y )) is the probability of choosing lottery X over Y . The
central property of NEU models is that choice probabilities are monotone in the
utility. I.e., if U(X) ≥ U(Y ), then, since H is increasing in its first argument, for all
lotteries Z,

H(U(X), U(Z)) ≥ H(U(Y ), U(Z)).

This means that X is chosen over Z more frequently than Y is chosen over Z.18

We think of H as a measure of preference intensities between alternatives that
depends on their utilities. When this measure is simply the utility difference, this
reduces to FNEU. NEU models are much more flexible, allowing for any measure of
intensities that is monotone in the utilities.

The next result shows that the paradoxes of FNEU models with CARA or CRRA
utilities are not artifacts of overly restrictive Fechnerian noise structures.

Theorem 2. For any HA, HB ∈ H and any distinct CARA (CRRA) utilities UA

and UB, there exist paradoxical lotteries for (UA, HA) and (UB, HB).

One may guess, at this point, that paradoxes arise in NEU models under CARA
or CRRA utilities because H is applied to vNM utility U , which is merely a repre-
sentation of the preference and carries no cardinal significance. A natural alternative
would be to calculate, for each lottery X, its certainty equivalent u−1

A (E[uA(X)]),
18In Appendix H, we show that in any stochastic choice model with this property, the choice

probability of X over Y takes the form

H(U(X), U(Y )),

for some H that is increasing in the first argument and satisfying H(s, t) + H(t, s) = 1. This is
weaker than the requirement that H ∈ H, which additionally requires continuous non-vanishing
partial derivatives.
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and apply H to the certainty equivalents. The next result shows that this does not
solve the problem. In fact, we will still have paradoxes, even if we more generally
apply H to f ◦ U where f is any continuously differentiable function with positive
derivative. This is because Hf defined by Hf (s, t) = H(f(s), f(t)) is also a member
of H.

Corollary 1. Let fA and fB be continuously differentiable functions with positive
derivatives. Then, for any HA, HB ∈ H and any distinct CARA (CRRA) utilities
UA and UB, there exist paradoxical lotteries for (fA ◦ UA, HA) and (fB ◦ UB, HB).

To see what drives non-monotonicity in these models, note that when a noise
structure H is applied to a utility function, it measures the strength of preference
between alternatives in a way that depends on the particular utility representation.
CARA and CRRA expected utilities exhibit pathological comparative statics in
their risk coefficients, preventing any hope of monotonicity. When these utilities
are transformed to, say, certainty equivalents, the continuous differentiability of the
monotone transformation f ensures that the resulting utilities change locally like
expected utilities. It turns out that this remnant of CARA/CRRA expected utility
is enough to preclude monotonicity.

Theorem 2 is proved in Appendix E. The proof is based on the observation that
the class of NEU models is contained within the broader class of menu-dependent
Fechnerian noisy expected utility models, which also suffer from non-monotonicity.
We discuss this class of models and show how they generalize NEU in the upcoming
section.

6 Menu-Dependent Models

In the previous sections, we studied models in which noise structures vary across
individuals but not across menus for the same individual. In this section, we study a
more flexible model that incorporates menu-dependent noise structures. For example,
consider CARA agents with probit noise whose variance depends on the sum of the
variances of the lotteries in the menu. This captures an intuitive idea that lotteries
involving larger sums may generate more noise, allowing for mistake probabilities to
stay high even when stakes are high.
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In a menu-dependent Fechnerian noisy expected-utility (MNEU) model, each indi-
vidual is associated with a vNM utility function U and menu-dependent Fechnerian
noise structures, i.e., a map Φ: L × L → F , so that

ΦX,Y (U(X) − U(Y ))

is interpreted as the probability that they choose X over Y , where ΦX,Y is short for
Φ(X, Y ). We refer to Φ as a noise assignment, and require that ΦX,Y (t)+ΦY,X(−t) =
1.19

This is a very flexible class models that generalizes NEU. To see this, let H ∈ H
and let U be a vNM utility. Define

ΦX,Y (t) = H
(

Ū + t

2 , Ū − t

2

)
,

where Ū = U(X)+U(Y )
2 . Then

ΦX,Y (U(X) − U(Y )) = H(U(X), U(Y )).

We show in Appendix E that our assumptions on H imply that ΦX,Y ∈ F for all
X, Y ∈ L, so Φ is a valid noise assignment.

One way in which MNEU generalizes NEU is that, unlike in NEU where choice
probabilities can only depend on utilities, choice probabilities from MNEU models
may depend on the distributions of the lotteries. In fact, they may even depend
on the joint distribution of the lotteries in a menu, since Φ is a function of the
random variables in L. For example, X may be chosen over Y more frequently if X

dominates Y state-wise rather than in terms of first-order stochastic dominance.20

An important subclass of menu-dependent models arises from replacing the
identicality assumption on Equation (3) with symmetry of the shock terms. I.e., the
choice probability of X over Y is

P(U(X) + εX ≥ U(Y ) + εY ) = ΦX,Y (U(X) − U(Y )),

where εX and εY are independent and symmetric about zero (but not necessarily
identical) random variables and ΦX,Y is the CDF of εX − εY .21

19Since ΦX,Y , ΦY,X ∈ F , this requirement implies ΦX,Y = ΦY,X .
20This distinction can only be determined from the joint distribution of (X, Y ), not from their

marginals.
21The symmetry assumption on the shocks ensures that ΦX,Y ∈ F . We can relax this assumption

by only requiring that the difference is symmetric.
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We note that without any restrictions on the noise assignment Φ, the only
implication of menu-dependent FNEU models is that individuals will choose their
preferred lottery more than half of the time. This requirement is weaker than the
central requirement of NEU, which was that choice probabilities must be monotone
in the utility.

In order to rule out pathological noise assignments, we require that menus with
similar lotteries are associated with similar noise structures. Formally, we define
topologies on L and on F and require that the noise assignment be continuous.
We say that a sequence of lotteries X1, X2, . . . converges to a lottery X if for all
increasing and continuous functions u it holds that

E[|u(Xn) − u(X)|] → 0.

In other words, X1, X2, . . . converges to X if the sequence of random utilities
u(X1), u(X2), . . . converges to u(X) in L1 for every Bernoulli u. An important
property of this topology is that vNM utilities are continuous. Moreover, noise
assignments are not required to depend only on the marginal distributions of the
lotteries in the menu; they may, for example, depend on their joint distribution.

We associate each noise structure in F with its derivative and say that Φ is
continuous if whenever Xn → X and Yn → Y , it holds that the derivatives of ΦXn,Yn

converge compactly to that of ΦX,Y .22

It turns out that many noise assignments are continuous. In particular, our
topology on L is very fine,23 making many functions on L continuous. Moreover,
compact convergence is not too strict a requirement in many natural applications. For
example, for normal and logistic distributions, parameter convergence implies compact
convergence of densities. E.g., a sequence of densities ϕn of normal distribution with
means µn → µ and variances σn → σ compactly converges to ϕ with corresponding
mean µ and variance σ. In fact, parameter convergence is sufficient for the location-
scale family of distributions with continuous densities (see Appendix C).

Our next theorem demonstrates that the paradoxical property of CARA and
22That is, on every compact set K ⊂ R,

lim
n

(
sup
t∈K

∣∣Φ′
Xn,Yn

(t) − Φ′
X,Y (t)

∣∣) = 0.

23Indeed, it is finer than any Lp topology for 1 ≤ p < ∞ and continuous function converge..
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CRRA Fechnerian models cannot be resolved by allowing noise structures that
depend (continuously) on the menu.

Theorem 3. For any continuous noise assignments ΦA, ΦB and distinct CARA
(CRRA) utilities UA, UB, there exist paradoxical lotteries.

In other words, there exist lotteries S >c R such that

ΦA
S,R(UA(S) − UA(R)) < ΦB

S,R(UB(S) − UB(R)).

Theorem 3 is proved in Appendix D. Theorem 3 highlights that the non-monotonicity
result of the menu-independent Fechnerian models (Theorem 1) is not merely a
byproduct of asymptotic properties of choice probabilities when stakes are increased.
Indeed, in the following example noise assignments are engineered so that choice
probabilities are scale-invariant, yet monotonicity does not obtain.

Example 1. Let UA = CRRAa and UB = CRRAb where a > b > 0, and let F be
the CDF of the standard normal distribution. Define the noise assignments ΦA and
ΦB by

ΦA
X,Y (t) = F

(
t

σA(X, Y )

)

ΦB
X,Y (t) = F

(
t

σB(X, Y )

)
,

where

σA(X, Y ) = E
[
Xa−1 + Y a−1

]−1
,

σB(X, Y ) = E
[
Xb−1 + Y b−1

]−1
.

In this example, the noise structure normal with standard deviation σA(X, Y ),
which decreases as X and Y are scaled up, i.e., σA(αX, αY ) < σA(βX, βY ) for
α > β. Thus, this noise assignment captures the behavioral property that individuals
pay more attention when presented with menus of lotteries with higher stakes.
Moreover, the standard deviations are chosen so that each individual’s probability
of choosing βX over βY does not depend on β > 0.24 Interestingly, however, since

24To see this, note that τA(βX, βY ) = βa−1τA(X, Y ) and

UA(βX) − UA(βY ) = β1−a(UA(X) − UA(Y )).
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σA(Xn, Yn) → σA(X, Y ) whenever Xn → X and Yn → Y , it follows from Theorem 3
that even these calibrated models cannot avoid the paradox. Indeed, no continuous
noise assignment can resolve the paradox.

Theorem 3 demonstrates that CARA and CRRA utilities are fundamentally
paradoxical when choices are noisy, even if we allow noise structures to vary across
individuals and menus. Thus, if we hope to model the stochastic choice behavior of
A and B, where A consistently chooses safer lotteries more frequently than B, we
must forgo CARA and CRRA utilities. We take this on in the next section, where
we suggest alternative vNM utilities that can accommodate this behavior under
standard models of noise.

7 Monotone Alternatives to CARA and CRRA

In the previous sections, we have seen that when agents A and B have CARA
or CRRA preferences and A is more risk-averse than B, there are no reasonable
noise structures that can accommodate A consistently choosing safer options more
often. In this section, we revisit the various stochastic choice models discussed above
and investigate which vNM utility functions, beyond CARA and CRRA, have this
problem. We associate agents A and B with their corresponding vNM utilities UA

and UB and noise assignments ΦA and ΦB. We say that A is stochastically more risk-
averse than B if (UA, ΦA) always yields higher choice probability for safer lotteries
than (UB, ΦB).25 As we have seen, A may not be stochastically more risk-averse
than B, even if UA is more risk averse than UB.

We thus depart from the Arrow-Pratt order and study an alternative notion
of comparative risk between vNM utilities that leads to more frequent risk-averse
choices in the presence of noise. We say UA = E[uA] is absolutely more concave than
UB = E[uB], denoted UA ≥abs UB, if uA − uB is concave.26

It follows that

ΦA
βX,βY (UA(βX) − UA(βY )) = F (τA(βX, βY ) · (UA(βX) − UA(βY ))

= F (τA(X, Y ) · (UA(X) − UA(Y ))

= ΦA
X,Y (UA(X) − UA(Y )).

25This notion is due to Wilcox (2011) who defines it for general stochastic choice functions.
26Recall that UA is more risk averse than UB if UA is more concave than UB in the sense that
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The next proposition states that absolute comparative concavity aligns with
stochastic comparative risk aversion under identical Fechnerian noise.

Proposition 3. Let F ∈ F and let FA = FB = F . A is stochastically more
risk-averse than B if and only if UA ≥abs UB.

Proposition 3 characterizes when two FNEU models with identical noise can be
ordered by stochastic risk aversion. Since Fechnerian noise structures are strictly
increasing, the choice probability of S is higher for A than B if and only if the utility
difference is higher for A than B, i.e.,

UA(S) − UA(R) ≥ UB(S) − UB(R). (7)

We show in Appendix F that this inequality holds for all lotteries S >c R if and only
if UA ≥abs UB.

In the case where A and B have different noise structures, i.e., FA ≠ FB, a
sufficient condition for A to be stochastically more risk-averse than B is if UA ≥abs UB

and FA is more precise than FB, in the sense that FA(t) ≥ FB(t) for t ≥ 0. A more
precise noise structure translates the same utility difference into a higher probability
of choosing a more preferred alternative. Since A is risk averse, increasing A’s
precision will only increase the probability that A chooses S. In particular,

FA(UA(S) − UA(R)) ≥ FA(UB(S) − UB(R)) ≥ FB(UB(S) − UB(R)),

where the first inequality follows from Proposition 3. Of course, A may experience
much more noise than B, in which case A will make more mistakes and may choose
riskier options more frequently than B, even with UA ≥abs UB.

Proposition 3 highlights yet another property of CARA and CRRA utilities
that leads to non-monotonicity. It is easy to check that distinct CARA (CRRA)
utilities are never ordered by ≥abs. Moreover, while ≥abs is not invariant to affine
transformations, under no such transformations, TA and TB, are TA(UA) and TB(UB)
ordered by ≥abs when UA and UB are distinct CARA (CRRA) utilities.27

uA = f ◦uB for some increasing and concave function f . While this leads to a notion of comparative
risk that is invariant to affine transformations of the underlying Bernoulli utilities, its absolute
counterpart is not. This alternative comparative concavity condition is due to McElroy (1999).

27Indeed, (7) is equivalent to the ratio (UB(S) − UB(R))/(UA(S) − UA(R)) being below one. By
Lemma 1, these ratios are unbounded for CARA and CRRA utilities as we vary S and R. Since
the application of affine transformations only scales these ratios, they will remain unbounded.
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By the following theorem, this property is exactly what determines whether
stochastic comparative risk aversion may obtain under MNEU models.

Theorem 4. Let UA and UB be vNM utilities. There exist continuous noise assign-
ments ΦA and ΦB such that (UA, ΦA) is stochastically more risk-averse than (UB, ΦB)
if and only if there exists k > 0 such that kUA ≥abs UB.

When UA = E[uA] and UB = E[uB], where uA and uB are twice differentiable
strictly concave functions, the condition that there exists k > 0 such that

kUA ≥abs UB (8)

is equivalent to the boundedness of u′′
B/u′′

A.
The necessity of (8) for A to be stochastically more risk averse is proved in

Appendix F.1. We prove the reverse direction here by showing that even under
a simple heteroskedastic probit model, without menu dependence, this condition
suffices.

Indeed, suppose that kUA ≥abs UB for some k > 0. Let ΦB assign to every menu
the CDF of a standard normal distribution, denoted by F , and let ΦA always assign
the CDF of a normal distribution with zero mean and standard deviation 1/k. For
any lotteries S ≥c R,

ΦA
S,R(UA(S) − UA(R)) = F (k(UA(S) − UA(R))) (9)

ΦB
S,R(UB(S) − UB(R)) = F (UB(S) − UB(R)). (10)

Since kuA − uB is concave, kUA(S) − UB(S) ≥ kUA(R) − UB(R). Hence, since F

is strictly increasing, (9) exceeds (10), meaning that A is stochastically more risk
averse.

In Appendix G, we compare (8) with the comparative risk aversion notion of
Ross (1981) in the deterministic framework. We show that his notion is stronger and
discuss an interpretation of it in the stochastic framework.

7.1 Parametric Families of Utility Functions

The boundedness of u′′
B/u′′

A is violated by many parametric families of utility func-
tions that are used to model risk aversion. In particular, we illustrate the expo-power
utility function, a two-parameter family proposed by Saha (1993) to capture in-
creasing/decreasing absolute/relative risk aversion, suffers from the same problems
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as CARA and CRRA utilities.28 The increasing and concave expo-power utility
function is given by

ua,r(x) = 1 − e−ax1−r

a
,

for x ≥ 0 and positive a and 0 ≤ r < 1. Note that the absolute risk aversion is given
by

Aa,r(x) = r

x
+ a(1 − r)x−r,

for x > 0, which is decreasing, constant, or increasing depending on the parameters.
Thus, unlike CARA or CRRA utility, the family of expo-power utilities, parameterized
by a and r, is not totally ordered by absolute/relative risk aversion.

Importantly, for any pairs of coefficients (r1, a1) and (r2, a2) such that A(r1,a1)(x) ≥
A(r2,a2)(x) so that U1 = E[ur1,a1(X)] is more risk-averse than U2 = E[ur2,a2(X)], it
must hold that r1 = r2 and a1 > a2. A simple calculation shows that u′′

r2,a2(x)/u′′
r1,a1(x)

tends to infinity as x → ∞. Thus, we have the following corollary.

Corollary 2. For any continuous noise assignments ΦA, ΦB and distinct expo-
power utility functions UA,UB such that UA is more risk-averse than UB, there exist
paradoxical lotteries.

Corollary 2 highlights that the paradoxical properties arising from CARA (CRRA)
utilities are pervasive, and that they do not depend on the strong assumption of
constant absolute (relative) risk aversion.

We conclude by proposing parametric families under which the Arrow-Pratt
notion of comparative risk and its stochastic counterpart coincide. Recall that for
strictly increasing concave functions f and g, f is more concave than g if f ◦ g−1 is
increasing and concave. We start with the following remark.

Remark 2. Let f and g be strictly increasing concave functions such that f is
more concave than g. Let uA(x) = af(x) + g(x) and uB(x) = bf(x) + g(x), where
a > b ≥ 0. Then UA = E[uA] is more risk-averse than UB = E[uB] and UA ≥abs UB.

These utilities are parametrized by the coefficient on the more risk-averse Bernoulli
utility function f , i.e., the higher the coefficient, the greater the risk aversion.29

28Indeed, Holt and Laury (2002) uses the expo-power utility function to model increasing relative
risk aversion exhibited in their data.

29Indeed,

−u′′
A(x)

u′
A(x) ≥ −u′′

B(x)
u′

B(x) ⇐⇒ (a − b)
(

−f ′′(x)
f ′(x) + g′′(x)

g′(x)

)
≥ 0.
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Moreover, since f is concave, uA − uB = (a − b)f is concave, i.e., UA ≥abs UB. Note
that while Remark 2 holds for these particular utility representations, any affine
transformations of these representations necessarily lead to agreement between the
traditional and stochastic notions of comparative risk, in the senses of Arrow-Pratt
and (8). Thus, we have the following proposition.

Proposition 4. Let f and g be strictly increasing concave functions such that f

is more concave than g. Let 1 > a > b ≥ 0. Let uA(x) = af(x) + (1 − a)g(x) and
uB(x) = bf(x) + (1 − b)g(x). Then the following statements hold.

1. UA = E[uA] is more risk-averse than UB = E[uB]

2. There exists k > 0 such that kUA ≥abs UB.

Proposition 4 suggests a replacement of the CARA utility family for estimation.
One specifies an upper and lower bound on absolute risk aversion, corresponding to
two CARA utilities, and then estimates the weight on each utility. The same exercise
can be done with bounds on relative risk aversion and CRRA utilities. If an analyst
wants to deploy a stochastic model whose predictions are consistent with comparative
risk preferences in the presence of noise, these novel classes of utility functions may
be of interest. Importantly, in order to allow for one agent that is stochastically
more risk averse than another, such models should allow for heteroskedastic errors.

8 Conclusion

This paper establishes that the paradoxes long noted for CARA and CRRA utilities
under homoskedastic Fechnerian noise are not artifacts of restrictive parametric
assumptions, but instead reflect a deeper incompatibility between these utility
forms and noisy choice. We show that the same non-monotonic comparative statics
arise under highly flexible noise specifications—including heterogeneous noise across
individuals and menu-dependent noise.

We obtain a simple characterization of whether two utility functions can yield
sensible predictions in the presence of noise. This condition rules out even the
more general expo-power utilities, and points to new parametric families that restore

Since f is more concave than g, it follows that a ≥ b is equivalent to UA being more risk-averse
than UB .
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intuitive comparative statics. These families, which include interpolation between two
CARA or two CRRA utilities, provide empirically tractable, well-behaved alternatives
for measuring risk preferences in noisy environments. We leave to future work an
empirical examination of how risk aversion and decision noise co-vary across different
stake levels, as well as systematic tests of these proposed utility families under a
range of noise specifications.

We conclude by noting that the continuity requirement on noise assignments may
be restrictive in some settings. For example, discontinuous noise assignments may
capture interesting features of binary comparisons, such as salience or complexity.
Understanding which discontinuous models generate paradoxical reversals thus
remains an open and potentially important direction for future research.
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A Proof of Theorem 1

Proof of Lemma 1. Let S >c R and a > b > 0. For CARA, we have

CARAb(S + x) − CARAb(R + x)
CARAa(S + x) − CARAa(R + x) = a

b

E
[
e−b(R+x)

]
− E

[
e−b(S+x)

]
E[e−a(R+x)] − E[e−a(S+x)]

= a

b

E
[
e−bR

]
− E

[
e−bS

]
E[e−aR] − E[e−aS]

 e(a−b)x

∝ e(a−b)x.

For CRRA, we have

CRRAb(k · S) − CRRAb(k · R)
CRRAa(k · S) − CRRAa(k · R) = 1 − a

1 − b

E
[
S1−b

]
− E

[
R1−b

]
E[S1−a] − E[R1−a]

 k1−b

k1−a

∝ ka−b.
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Lemma 1 provides sequences of lottery pairs (Sn, Rn) along which the ratio of
expected-utility differences (UB(Sn) − UB(Rn))/(UA(Sn) − UA(Rn)) diverges, for
CARA and CRRA utilities. Lemma 2 establishes that when such a sequence exists
there will be paradoxical lotteries. An important subtlety of Lemma 2 is that the
paradoxical lotteries may not be part of this sequence. Indeed, Lemma 2 relies on the
following lemma, which establishes that under the additional condition that utility
differences tend to zero, there will be paradoxical lotteries in the sequence.

Lemma 3. Let FA, FB ∈ F and let UA and UB be risk-averse vNM utility functions
with UA more risk averse. There exist M ∈ R and δ > 0 such that all lotteries
S >c R satisfying

UB(S) − UB(R)
UA(S) − UA(R) ≥ M and Ui(S) − Ui(R) < δ (11)

for i = A, B are paradoxical.

Proof of Lemma 3. Let S >c R. Let fA(t) = d
dt

FA(t) and fB(t) = d
dt

FB(t). Since FA

is continuously differentiable, fA is continuous at 0 so that for each εA > fA(0) there
is δA > 0 such that for each t ∈ (0, δA), fA(t) < εA and FA(t) < 1

2 + tεA. Since FB is
continuously differentiable and fB > 0, for each 0 < εB < fB(0), there exists δB > 0
such that for any t ∈ (0, δB), fB(t) > εB and FB(t) > 1

2 + tεB. Let δ = min{δA, δB}
and let M = εA/εB.

Let S and R as in the statement of the lemma. Then

FB(UB(S) − UB(R)) >
1
2 + (UB(S) − UB(R))εB

≥ 1
2 + (UA(S) − UA(R))εA

> FA(UA(S) − UA(R)).

In light of Lemma 3, Lemma 2 follows from the observation that for any lotteries
S >c R and ε > 0, there exist lotteries S ′ >c R′ with the same utility difference such
that the denominator is less than ε.

Proof of Lemma 2. Let FA, FB ∈ F and let UA and UB be risk-averse vNM utility
functions with UA more risk averse. By Lemma 3, there exist M ∈ R and δ > 0 such
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that all lotteries S >c R satisfying

UB(S) − UB(R)
UA(S) − UA(R) ≥ M and Ui(S) − Ui(R) < δ (12)

for i = A, B are paradoxical. By hypothesis, there exist lotteries S >c R satisfying
the first inequality.

For λ ∈ (0, 1), let RλS denote a lottery distributed as a compound lottery that
yields R with probability λ and yields S with probability 1 − λ. Then S >c RλS and

UB(S) − UB(RλS)
UA(S) − UA(RλS) = UB(S) − UB(R)

UA(S) − UA(R) ,

by the linearity of expected utility, i.e., U(RλS) = λU(R) + (1 − λ)U(S) for any
vNM utility U . Moreover, as λ tends to zero, Ui(S) − Ui(RλS) tends to zero. Hence,
S and RλS are paradoxical lotteries for all λ small enough.

B Proof of Proposition 2

Proposition 2 shows how to generate the paradoxical lotteries of Theorem 1 by
generalizing Proposition 1 to arbitrarily different noise structures. The CARA case
relies on the following lemma about diminishing utility differences as background
wealth increases.

Lemma 4. Let S ≥c R. Then

lim
x→∞

CARAa(S + x) − CARAa(R + x) = 0

for all a > 0.

Proof. Since S and R have equal means, we suppose, without loss of generality,
that E[S] = E[R] = 0. Let ua(x) = 1−e−ax

a
denote the CARA Bernoulli utility

under coefficient a, and let m denote the essential infimum of S.30 By monotonicity,
ua(x)−ua(m+x) ≥ ua(x)−CARAa(S+x) and by concavity, ua(x)−CARAa(S+x) ≥
0. Since E[S] = 0, m ≤ 0. By concavity,

d

dx
ua(m + x) · |m| ≥ ua(x) − ua(m + x).

30This is the largest value that S exceeds with probability 1.
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Note that d
dx

ua(m + x) = e−a(m+x). Thus

e−a(m+x) · |m| ≥ ua(x) − ua(m + x) ≥ ua(x) − CARAa(S + x) ≥ 0.

Taking the limit as x → ∞, we see that ua(x) − CARAa(S + x) → 0. Since S was
an arbitrary mean-zero lottery and E[S + R] = 0, we have

lim
x→∞

ua(x) − CARAa(S + R + x) = 0

as well, concluding the proof.

Proof of Proposition 2. For the case of CARA utilities, Lemma 1 establishes that
for any pair of lotteries S >c R, the ratio

UB(S + x) − UB(R + x)
UA(S + x) − UA(R + x)

tends to infinity with x, while Lemma 4 establishes that the numerator and denomi-
nator go to zero. Hence, the result follows from Lemma 3.

For the CRRA case, Lemma 1 establishes that for any pair of lotteries S >c R,
the ratio

UB(k · S) − UB(k · R)
UA(k · S) − UA(k · R)

tends to infinity with k. As in the proof of Lemma 2,

UB(k · S) − UB(k · RλS)
UA(k · S) − UA(k · RλS) = UB(k · S) − UB(k · R)

UA(k · S) − UA(k · R) ,

and as λ tends to zero, Ui(k · S) − Ui(k · RλS) tends to zero for i = A, B, and the
result follows from Lemma 3.

C Uniform Convergence of Location-Scale Families

Let g : R → [0, ∞) be a continuous probability density function. Then µ ∈ R and
σ > 0 parameterize the location-scale family with densities

fµ,σ(x) = 1
σ

g
(

x − µ

σ

)
.

Proposition 5. If (µn, σn) → (µ, σ), then ∥fµn,σn − fµ,σ∥∞ −→ 0.
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Proof of Proposition 5. Because g is continuous and integrable on R, it necessarily
satisfies lim|y|→∞ g(y) = 0; hence g is bounded and uniformly continuous on R.
Define an = σ

σn
and bn = µ−µn

σn
. Note that an → 1 and bn → 0. Changing variables

y = x−µ
σ

, we have

∥fµn,σn − fµ,σ∥∞ = sup
y∈R

∣∣∣∣∣∣ 1σ
(
an g(any + bn) − g(y)

)∣∣∣∣∣∣
≤ 1

σ

(
|an − 1| ∥g∥∞ + sup

y∈R
|g(any + bn) − g(y)|

)
.

The first term |an−1| ∥g∥∞ → 0 since an → 1. For the second term, supy∈R |g(any+
bn) − g(y)|, fix ε > 0. By uniform continuity of g, there exists δ > 0 such that
|u − v| < δ implies |g(u) − g(v)| < ε. For large n, since an → 1 and bn → 0, we have
supy |(an − 1)y + bn| < δ on any compact set, and the tail contribution is negligible
because g(y) → 0 uniformly as |y| → ∞. Hence supy∈R |g(any + bn) − g(y)| < ε for
n large.

D Proof of Theorem 3

The proof of Theorem 3 makes use of the following lemma, which is a strengthening
of Lemma 2.

Lemma 5. Let ΦA, ΦB : L × L → F be continuous noise assignments. Let UA and
UB be vNM utility functions with the property for each M ∈ R there exist lotteries
S >c R such that

UB(S) − UB(R)
UA(S) − UA(R) ≥ M.

Then there exist lotteries S >c R such that S is chosen more frequently under
(UB, ΦB) than (UA, ΦA).

Proof of Lemma 5. Let UA and UB be as in the statement of the lemma. Let
Z, Z ′, Λ ∈ L such that Z and Z ′ have the same distribution, and Λ is uniformly
distributed on [0, 1] and independent of Z and Z ′. Let F A = ΦA(Z, Z ′) and F B =
ΦB(Z, Z ′) and let fA(t) = d

dt
F A(t) and fB(t) = d

dt
F B(t). Let εA > fA(0) and

εB < fB(0). Since fA and fB are positive and continuous at 0, there is δ > 0 such
that for all 0 < t < δ, fA(t) < εA and fB(t) > εB.
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By assumption, there are lotteries X >c Y such that
UB(X) − UB(Y )
UA(X) − UA(Y ) >

εA

εB

.

Since the inequality only depends on the distributions of X and Y , we may choose
X and Y to be independent of Λ. We define the random variables Sλ and Rλ by

Sλ(ω) =

X(ω) Λ(ω) ≤ λ

Z(ω) Λ(ω) > λ

and

Rλ(ω) =

Y (ω) Λ(ω) ≤ λ

Z ′(ω) Λ(ω) > λ.

Note that for λ ∈ (0, 1), Sλ >c Rλ and

UA(Sλ) − UA(Rλ) = λ(UA(X) − UA(Y )),

since UA(Z) = UA(Z ′). Hence,

UB(Sλ) − UB(Rλ)
UA(Sλ) − UA(Rλ) = UB(X) − UB(Y )

UA(X) − UA(Y ) >
εA

εB

, (13)

and UA(Sλ) − UA(Rλ), UB(Sλ) − UB(Rλ) > 0.
Let F A

λ = ΦA(Sλ, Rλ), F B
λ = ΦB(Sλ, Rλ) and let fA

λ (t) = d
dt

F A
λ (t) and fB

λ (t) =
d
dt

F B
λ (t). Since Sλ → Z and Rλ → Z ′ as λ → 0, continuity of ΦA and ΦB imply that

fA
λ → fA and fB

λ → fB compactly. Thus, there is δ′ > 0 and λA such that for all
λ ∈ (0, λA) and all t ∈ [0, δ′], fA

λ (t) < εA and F A
λ (t) < 1

2 + tεA. Likewise, there is λB

such that for all λ ∈ (0, λB) and all t ∈ [0, δ′], F B
λ (t) > 1

2 + tεB.
For λ small enough,

UA(Sλ) − UA(Rλ) < δ′

and
UB(Sλ) − UB(Rλ) < δ′.

Thus, for λ small enough, we have

F B
λ (UB(Sλ) − UB(Rλ)) >

1
2 + (UB(Sλ) − UB(Rλ))εB

>
1
2 + (UA(Sλ) − UA(Rλ))εA

> F A
λ (UA(Sλ) − UA(Rλ)).
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The second inequality follows from (13).

By Lemma 1, any distinct CARA utilities UA and UB, where UA is more risk-
averse than UB, satisfy the hypothesis of Lemma 5, and likewise for CRRA utilities.
Hence, Theorem 3 follows from Lemma 5.

E NEU Models

Recall that H is the set of all continuously differentiable noise structures H whose
partial derivatives are nowhere zero.

Proof of Theorem 2. First, we show that simply scalable models are a subclass of
menu-dependent Fechnerian models. Indeed, let S ∈ H and let U be a CARA or
CRRA vNM utility. Define ΦX,Y (t) = H(Ū + t

2 , Ū − t
2) where Ū = U(X)+U(Y )

2 . Then

ΦX,Y (U(X) − U(Y )) = H(U(X), U(Y )).

Note that ΦX,Y (t)+ΦX,Y (−t) = 1 since H(s, t)+H(t, s) = 1. Let ϕX,Y (t) = d
dt

ΦX,Y (t).
Then

2ϕX,Y (t) = H1

(
Ū + t

2 , Ū − t

2

)
− H2

(
Ū + t

2 , Ū − t

2

)
.

Since H1 is continuous and positive and H2 is continuous and negative, it follows
that ϕX,Y (t) is continuous and positive. Thus, ΦX,Y ∈ F for all (X, Y ) ∈ L × L.

It remains to be shown that Φ is a continuous assignment, i.e., when Xn → X

and Yn → Y , it holds that ϕ(Xn, Yn) → ϕ(X, Y ) uniformly on each compact set.
Letting Ūn = U(Xn)+U(Yn)

2 , we have

2ϕ(Xn,Yn)(t) = H1

(
Ūn + t

2 , Ūn − t

2

)
− H2

(
Ūn + t

2 , Ūn − t

2

)
.

Since U is a vNM utility function, it is continuous, and Ūn → Ū . Since H1 and H2

are continuous, they are uniformly continuous on compact sets. Thus,

lim
n

sup
−1≤t≤1

|ϕ(Xn,Yn)(t) − ϕX,Y (t)| = 0.

The result follows from Theorem 3.
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F Monotonicity Results

Recall that UA is absolutely more concave than UB if the difference of their Bernoulli
utilities is concave. Proposition 3 states that absolute comparative concavity is
equivalent to stochastic comparative risk aversion under identical noise.

Proof of Proposition 3. Since A and B have the same noise structure F which is a
strictly increasing function, for A to be stochastically more risk-averse than B, we
require that for all S ≥c R,

UA(S) − UA(R) ≥ UB(S) − UB(R),

or equivalently,

UA(S) − UB(S) ≥ UA(R) − UB(R). (14)

We must show that (14) is equivalent to the concavity of uA −uB. Let h = uA −uB. If
h is concave, then (14) is satisfied by the definition of the concave order. Conversely,
for the sake of contradiction, suppose that h is not concave. Then there are x, y ∈ R
and λ ∈ (0, 1) such that

h(λx + (1 − λ)y) < λh(x) + (1 − λ)h(y).

Let S denote a degenerate lottery that always pays λx + (1 − λ)y, and let R denote a
lottery that pays x with probability λ and y with complementary probability. Then

UA(S) − UB(S) = h(λx + (1 − λ)y) < λh(x) + (1 − λ)h(y) = UA(R) − UB(R),

contradicting (14). Thus uA − uB is concave, meaning UA ≥abs UB.

F.1 Proof of Theorem 4

Theorem 4 provides a characterization of vNM utilities that lead to consistent
predictions under some noise structures.

Proof of Theorem 4. In Section 7, we showed that kUA ≥abs UB suffices for A to be
stochastically more risk averse than B under some noise structures. Here, we show
that it is necessary.
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Contrapositively, suppose that, for all k > 0, it is not the case that kUA ≥abs UB.
Then, by Proposition 3, for each k > 0, there are lotteries S >c R such that

k(UA(S) − UA(R)) < UB(S) − UB(R).

Hence, the result follows from Lemma 5.

G Comparison with Standard Comparative Risk Notions

Note that UA is more risk-averse than UB in the Arrow-Pratt sense if and only if, for
all x,

u′′
B(x)

u′′
A(x) ≤ u′

B(x)
u′

A(x) . (15)

While stochastic comparative risk depends on bounding the ratio of second derivatives
by a constant, the traditional Arrow-Pratt notion of comparative risk depends on
bounding this ratio by the ratio of marginal utilities. Thus, when u′

B(x)/u′
A(x) is

bounded, the traditional notion of comparative risk is sufficient for the stochastic
notion. On the other hand, Ross’ (1981) stronger comparative notion requires

u′′
B(x)

u′′
A(x) ≤ k ≤ u′

B(x)
u′

A(x) , (16)

for some k > 0 and all x, implying the boundedness of u′′
B/u′′

A. Moreover, Ross (1981)
shows (16) is equivalent to the existence of k such that kuA − uB is concave and
decreasing, while our condition does not require it to be decreasing.

The next proposition states that, in the presence of noise related by a scale factor,
Ross’ (1981) notion captures stochastic comparative risk aversion stemming from
preferences rather than greater choice precision. To formalize this, we introduce the
following notion of relative choice precision.

We say that A has greater choice precision than B if, whenever X first-order
dominates Y , A chooses X more than B.

Proposition 6. Let UA = E[uA] and UB = E[uB] be vNM utilities. Define FA(t) =
F (t/σA) and FB(t) = F (t/σB) for some σA, σB > 0 and F ∈ F . Then A is
stochastically more risk-averse than B while B has greater choice precision if and
only if uA/σA − uB/σB is decreasing and concave.

37



Proof of Proposition 6. For any X, Y ∈ L, A chooses X over Y more than B iff

UA(X)/σA − UB(X)/σB ≥ UA(Y )/σA − UB(Y )/σB. (17)

Thus, if uA/σA −uB/σB is decreasing and concave, then A chooses X less often when
X first-order dominates Y and more often when X concave-order dominates Y .

Conversely, suppose that A is stochastically more risk-averse than B while B has
greater choice precision. It follows from Proposition 3 that uA/σA −uB/σB is concave.
Moreover, for any x > y, a degenerate lottery paying x first-order dominates one
paying y. Since B has greater choice precision, the right hand side of (17) is larger,
and we conclude that uA/σA − uB/σB is decreasing.

H Axiomatic Foundation of NEU

In this section, we formulate axioms on stochastic choice rules that underpin NEU
models. Formally, a stochastic choice rule ρ : L×L → [0, 1] is any function satisfying

ρ(X, Y ) + ρ(Y, X) = 1,

where ρ(X, Y ) is interpreted as the probability that X is chosen over Y . We say
that ρ is monotone in a utility U : L → R if for all X, Y, Z, U(X) ≥ U(Y ) implies
that ρ(X, Y ) ≥ ρ(Y, Z).31 As the following lemma states, ρ must be a function of
utilities.

Lemma 6. If ρ is monotone in a utility U , then there is a function H : R2 → [0, 1]
such that for all X, Y ∈ L,

ρ(X, Y ) = H(U(X), U(Y )).

Moreover, H is increasing in the first argument, decreasing in the second argument,
and satisfies H(s, t) + H(t, s) = 1.

Proof of Lemma 6. For all s, t ∈ Im(U), define H̃(s, t) = ρ(X, Y ) for some X

and Y with U(X) = s, U(Y ) = t. To see that H̃ is well-defined, suppose that
U(X ′) = s, U(Y ′) = t. Then, since ρ is monotone in U ,

ρ(X ′, Y ′) = ρ(X, Y ′) = 1 − ρ(Y ′, X) = 1 − ρ(Y, X) = ρ(X, Y ).
31This property is related to strong stochastic transitivity. See Strzalecki (2025).
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Clearly,
H̃(s, t) + H̃(t, s) = ρ(X, Y ) + ρ(Y, X) = 1.

Moreover, H̃ must additionally satisfy:

s1 ≤ s2, t1 ≥ t2 =⇒ H̃(s1, t1) ≤ H̃(s2, t2),

for all s1, s2, t1, t2 ∈ Im(U). Indeed, H̃(s1, t1) ≤ H̃(s2, t1) = 1 − H̃(t1, s2) ≤
1 − H̃(t2, s2) = H̃(s2, t2).

Define the lower and upper extensions to R2:

HL(x, y) = sup{H̃(s, t) | s, t ∈ Im(U), s ≤ x, t ≥ y}, setting sup ∅ = 0,

HU(x, y) = inf{H̃(s, t) | s, t ∈ Im(U), s ≥ x, t ≤ y}, setting inf ∅ = 1.

Note that HL ≤ HU . Define H(x, y) = 1
2 (HL(x, y) + HU(x, y)). Clearly, H extends

H̃, as if x, y ∈ Im(U), then HL(x, y) = HU(x, y) = H̃(x, y).
Moreover, HL and HU are monotone in their first argument; hence, so is their

average, H. Finally, note that

HL(y, x) = sup{H̃(s, t) | s, t ∈ Im(U), s ≤ y, t ≥ x}

= sup{1 − H̃(t, s) | s, t ∈ Im(U), s ≤ y, t ≥ x}

= 1 − inf{H̃(t, s) | t, s ∈ Im(U), t ≥ x, s ≤ y}

= 1 − HU(x, y).

Hence, H(x, y) + H(y, x) = 1, and it follows that H is decreasing in its second
argument.

Since monotonicity in a utility is an ordinal requirement, we could rather impose
that ρ is monotone in a weak order ≿ on L. If we additionally impose that ≿ satisfy
the expected-utility axioms: independence and continuity, and moreover that X ∼ Y

whenever they have the same distribution, then the conclusion of Lemma 6 holds for
some vNM utility U .
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